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Abstract. The Student-Project Allocation problem with lecturer pref-
erences over Students with Ties (SPA-ST) is to find a stable matching
of students and projects to satisfy the constraints on student preferences
over projects, lecturer preferences over students, and the maximum num-
ber of students given by each project and lecturer. This problem has
attracted many researchers because of its wide applications in allocating
students to projects at many universities worldwide. However, the main
weakness of existing algorithms is their high computational cost. In this
paper, we propose a heuristic algorithm to improve solution quality and
execution time for solving the SPA-ST problem of large sizes. Experi-
mental results on randomly generated datasets show that our algorithm
outperforms the state-of-the-art algorithm regarding solution quality and
execution time.

Keywords: Student-Project Allocation Problem · Heuristic
algorithm · Blocking pairs · Stable matching · MAX-SPA-ST · Large
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1 Introduction

The problem of allocating students to projects based on their preferences, called
SPA [2,7,18,19,21], is to find a stable matching of the students and the projects
to satisfy the constraints on their preference lists. This problem has played an
important role at many universities in the world [6,10,14,17]. However, it has
a strict constraint on preference lists: students and lecturers must rank given
projects in a certain order that cannot cover a reality case: two projects are
ranked in the same order of preference in their lists. Abraham et al. [1] proposed
a new variant of the SPA problem, called preferences over Students contain-
ing Ties (SPA-ST), with an adjustment that helps students have more options
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when choosing projects from the lecturers: the list of preferences of lecturers and
students can contain equality relations.

In the SPA-ST problem, there are three stability criteria of matching: weakly
stable, strongly stable, or super-stable matching [19,20]. Irving et al. [22] proved
that a super-stable matching is strongly stable, and a strongly stable matching
is a weakly stable matching. If a super-stable matching is found, all weakly
stable matchings have the same sizes. Besides, they also showed that weakly
stable matching always exist and have different sizes [11]. Therefore, the problem
of finding a maximum size weakly stable matching is known as the NP-hard
problem [22]. In addition, strongly stable or super-stable matchings, whose goal
is to find a stable matching with a maximum number of matched students, may
not exist because the constraints are too tight [15,20,22].

Practically, the problem of finding a maximum weakly stable matching is the
most suitable for real-life applications because it focuses on assigning as many
students as possible to projects. This problem is known as the MAX-SPA-
ST problem and it has attracted much attention from the research community
because of its application in education optimization problems. Some universities
applied the MAX-SPA-ST problem to optimize the assignment of projects for
lecturers to satisfy the constraints of large-scale problems, such as the School
of Computer Science, the University of Glasgow [14], Faculty of Science, Uni-
versity of Southern Denmark [6], Department of Computer Science, York Uni-
versity, and elsewhere [3–5,8]. Unfortunately, finding an efficient algorithm to
solve the MAX-SPA-ST of large sizes is still a main challenge for the research
community. The approximation algorithm is one of the popular methods for
solving the SPA-ST problem [1,12,16,21]. Cooper et al. [7] first proposed a 3/2-
approximation algorithm named APX for solving the MAX-SPA-ST based on
Király’s idea [13]. Latter, Manlove et al. [15] presented an Integer Programming
(IP) model to find a strongly stable matching for SPA-ST. Recently, Olaosebikan
et al. [19] provided a polynomial-time algorithm to find a super-stable matching.
However, they proved that it might not exist for the SPA-ST problem.

In this paper, we call a weakly stable matching a stable matching. Accordingly,
we propose a new heuristic algorithm for solving the MAX-SPA-ST problem.
The main difference between our algorithm from the others is that we design two
heuristic functions to estimate reasonable solutions: the first is used to choose
the best project to match with students, while the second is to discard the worst
student from the matching when the project or lecturer is over-subscribed. By
combining two functions, our algorithm can find a suitable solution within a rea-
sonable time. Experimental results show that our proposed algorithm performs
better in terms of the average execution time and percentage of perfect matchings
compared to the most recent APX algorithm [7] for solving the MAX-SPA-ST
problem of large sizes.

The rest of this paper is organized as follows. Section 2 presents preliminar-
ies of the SPA-ST problem, Sect. 3 describes our proposed algorithm, Sect. 4
discusses our experimental results, and Sect. 5 concludes our work.
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2 Preliminaries

An SPA-ST instance consists of a set S = {s1, s2, · · · , sn} of students, a set
P = {p1, p2, · · · , pq} projects, and a set L = {l1, l2, · · · , lm} of lecturers. Each
student si ranks a set of acceptable projects in order of preference containing
ties. Each lecturer lk ∈ L offers a set of projects and ranks a set of students in a
preference list containing ties. Each lecturer has a capacity dk ∈ Z

+ indicating
the maximum number of students assigned to lk. Each project pj ∈ P is offered
by one lecturer and has a capacity cj ∈ Z

+ indicating the maximum number of
students that can be assigned to it. For example, an SPA-ST instance given in
Table 1 consists of a set of S = {s1, s2, s3, s4, s5, s6, s7} of students, a set P =
{p1, p2, p3, p4, p5, p6, p7, p8} of projects, and a set L = {l1, l2, l3} of lecturers.

Table 1. An example of SPA-ST instance

Students’ preferences Lecturers’ preferences

s1: (p1 p7) l1: (s7 s4) s1 s3 (s2 s5) s6 l1 offers p1, p2, p3

s2: p1 p3 p5 l2: s3 s2 s7 s5 l2 offers p4, p5, p6

s3: (p2 p1) p4 l3: (s1 s7) s6 l3 offers p7, p8

s4: p2

s5: p1 p4

s6: p2 p8 Project capacities c1 = 2, cj = 1, (2 ≤ j ≤ 8)

s7: (p5 p3) p8 Lecturer capacities d1 = 3, d2 = 2, d3 = 2

For any pair (si, pj) ∈ S × P, where pj is offered by lk, we refer (si, pj) as
an acceptable pair if si and pj both find each other acceptable, i.e., pj is ranked
by a student si and a lecturer lk ranks si. Each student si ∈ S has a set Ai ⊆ P
of acceptable projects that they rank in the order of preference. We let Rsi(pj)
and Rlk(si) be the rank of pi in si’s ranks list and the rank of si in lk’s ranks
list, respectively.

A matching T of an SPA-ST instance is a set of acceptable pairs (si, pj)
or (si,∅) such that |T (si)| ≤ 1 for all si ∈ S, |T (pj)| ≤ cj for all pj ∈ P,
and |T (lk)| ≤ dk for all lk ∈ L, meaning that each si belongs to at most one
pair. A project pj is under-subscribed, full, or over-subscribed if |T (pj)| < cj ,
|T (pj)| = cj , or |T (pj)| > cj , respectively. Similarly, a lecturer lk is under-
subscribed, full, or over-subscribed if |T (lk)| < dk, |T (lk)| = dk, or |T (lk)| >
dk, respectively. If an acceptable project and lecturer are under-subscribed, this
project is a potential project. If (si, pj) ∈ T , then si is matched to pj , denoted
by T (si) = pj . If T (si) = ∅, then si is unassigned in T , and we let the set of
unsigned students be U .

Given a matching T , a pair (si, pj) ∈ S ×P is a blocking pair in T if it meets
the conditions of (1), (2), and (3) as follows:

1. si and pj find accept each other ;
2. si prefers pj to T (si) or T (si) = ∅;
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3. either (a), (b) or (c) holds as follows:
(a) |T (pj)| < cj and |T (lk)| < dk;
(b) |T (pj)| < cj , |T (lk)| = dk, and (i) either si ∈ T (lk) or (ii) lk prefers si

to the worst student in T (lk);
(c) |T (pj)| = cj and lk prefers si to the worst student in T (pj).

A matching T is stable if it admits no blocking pair. Otherwise, it is unstable.
The size of a stable matching T , denoted by |T |, is the number of students
assigned in T . If |T | = n, then T is a perfect matching. Otherwise, T is a
non-perfect matching. |U| is the number of unassigned students in a non-perfect
matching T . If the size of a weakly stable matching is equal to n, denoted by
|T | = n, then T is a perfect matching. Otherwise, T is non-perfect.

3 Proposed Algorithm

In this section, we introduce our proposed algorithm. The core of our algorithm
is two heuristic functions that can improve execution time and solution qual-
ity for the MAX-SPA-ST problem. The first one helps students to choose a
suitable project for matching, while the second one determines which students
will be removed from the current matching when the lecturer or project is over-
subscribed.

3.1 Heuristic Functions

This section presents two heuristic functions to guide students and lecturers to
select appropriate projects and students, respectively, so that our algorithm can
reach a perfect matching with a better solution quality and shorter execution
time. To do so, we design two heuristic functions as follows:

(1) The heuristic function h(pj): For each student si ∈ S, we define the first
heuristic function h(pj) for every project pj in si’s rank list, where pj is offered
by lk, to choose the best project in terms of the minimum value of h(pj) in Eq. 1
as follows:

h(pj) = Rsi(pj) − min(dk − |T (lk)|, 1)/2 − (cj − |T (pj)|)/(2 × cj + 1). (1)

If (si, pj) is an acceptable pair, then 1 ≤ Rsi(pj) ≤ q. If lk is full, i.e.,
dk − |T (lk)| = 0, then min(dk − |T (lk)|, 1)/2 = 0. If lk is under-subscribed, i.e.,
|T (lk)| < dk, then min(dk − |T (lk)|, 1)/2 = 0.5 for all lk ∈ L. Besides, we have
0 ≤ cj − |T (pj)| ≤ cj , then 0 ≤ (cj − |T (pj)|)/(2 × cj + 1) < 0.5 for all pj ∈ P,
meaning that 0 < h(pj) ≤ q.

(2) The heuristic function g(st): For each student si ∈ S, when si offers to
pj , if pj is full or lk is full, then we choose the worst student in terms of the
maximum heuristic value to remove her/his from the current matching. To do
this, we define a heuristic function g(st) in Eq. 2 as follows:

g(st) = Rlk(st) + t(st) + r(st)/(q + 1). (2)
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For each student st ∈ T (lk), we have 1 ≤ Rlk(st) ≤ n. Moreover, t(st) =
sum(min(dz − |T (lz)|, 1) × min(cu − |T (pu)|, 1) × n), where pu is the same ties
with T (st) in st’s rank list and pu is offered by lz. If pu is under-subscribed, i.e.,
|T (pu)| < cu, then 1 ≤ cu −|T (pu)| ≤ cu, thus we have min(cu −|T (pu)|, 1) = 1.
Otherwise, if pu is full, i.e., |T (pu)| = cu, then cu − |T (pu)| = 0, thus we have
min(cu − |T (pu)|, 1) = 0. Similarly, we have min(dz − |T (lz)|, 1) = 1 or 0, if
lz is under-subscribed or full, respectively. If pu is a potential project, then we
have min(dz − |T (lz)|, 1) × min(cu − |T (pu)|, 1) × n = n, otherwise, min(dz −
|T (lz)|, 1)×min(cu − |T (pu)|, 1)×n = 0. Thus, we have 0 ≤ t(st) ≤ (q− 1)×n.
Let r(st) be the number projects ranked by st, we have 1 ≤ r(st) ≤ q, thus
0 < r(st)/(q + 1) < 1. This means that we have 1 < g(st) < (q × n + 1) for all
st ∈ T (lk).

3.2 Our Algorithm

This section presents our proposed algorithm, called HAG (Algorithm 1). At the
beginning, HAG assigns a matching T = ∅ and a count variable v(si) = 0 for
all students si ∈ S. At each iteration, if there exists an unassigned si ∈ S such
that si’s rank list is non-empty, then HAG runs as follows. First, it calculates
the heuristic function h(pj) for each project pj ∈ P in si’s rank list. Then, si
proposes a project pj corresponding to the minimum value of h(pj). Let lk be a
lecturer who offers pj , we consider the following cases:

1. If both pj and lk are under-subscribed, HAG adds (si, pj) into T .
2. If pj is full, HAG calculates g(st) for all st ∈ T (pj) and chooses a student

st with maximal value of g(st) by the function Choose Student(T (pj), lk). If
g(st) > n + 1 or Rlk(st) > Rlk(si), then HAG removes (st, pj), adds (si, pj)
into T and deletes pj in st’s rank list if g(st) < n+1. Otherwise, HAG deletes
pj in si’s rank list. Note that if g(st) > n + 1, then st contains a potential
project with the same ties as pj in st’s rank list.

3. If lk is full, HAG calculates g(sw) for all sw ∈ T (lk) and chooses a student
sw with maximal value of g(sw) by the function Choose Student(T (lk), lk).
If g(sw) > n + 1 or Rlk(sw) > Rlk(si), then HAG removes (sw, pu), where
pu = T (sw), and adds (si, pj) into T . If g(sw) < n+ 1, then HAG deletes pu
in sw’s rank list. Otherwise, it deletes pj in si’s rank list. When a project pu
is removed, it can form blocking pairs with students in T (lk), then HAG calls
the function Repair(pu, lk) to break blocking pairs satisfying the condition of
(3bi).

The above process repeats until a stable matching T is found. If |T | =
n, then HAG returns a perfect matching. Otherwise, HAG calls the function
Escape(pu, lk) to assign unassigned students for the current stable matching.
Our HAG stops when a perfect matching is found or all unassigned students
cannot find any projects to assign them. In the latter case, the algorithm returns
a stable matching of a maximum size found so far.
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Algorithm 1: HAG algorithm for MAX-SPA-ST

Input: An SPA-ST instance I
Output: A stable matching T

1. function HAG(I)
2. T := ∅;
3. v(si) := 0, ∀si ∈ S;
4. while true do
5. si := an unassigned student that si’s rank list is non-empty;
6. if there exists no student si then
7. if |T | = n then break;
8. else
9. T ′ := Escape(T );

10. if T ′ = T then break;
11. T := T ′;
12. continue;

13. end

14. end
15. for each pj ∈ Ai do
16. lk := a lecturer who offers pj ;
17. h(pj) := Rsi(pj)-min(dk-|T (lk)|, 1)/2-(cj-|T (pj)|) /(2 × cj + 1);

18. end
19. pj := argmin(h(pj) > 0), ∀pj ∈ P;
20. lk := a lecturer who offers pj ;
21. if pj and lk are under-subscribed then
22. T := T ∪ {(si, pj)};
23. else if pj is full then
24. [st, g(st)] := Choose Student(T (pj), lk);
25. if g(st) > n + 1 or Rlk(si) < Rlk(st) then
26. T := T \ {(st, pj)} ∪ {(si, pj)};
27. if g(st) < n + 1 then
28. Rst(pj) := 0;
29. end

30. else
31. Rsi(pj) := 0;
32. end

33. else
34. [sw, g(sw)] := Choose Student(T (lk), lk);
35. if g(sw) > n + 1 or Rlk(si) < Rlk(sw) then
36. T := T \ {(sw, pu)} ∪ {(si, pj)}, where pu = T (sw);
37. Repair(pu, lk);
38. if g(sw) < n + 1 then
39. Rsw (pu) := 0;
40. end

41. else
42. Rsi(pj) := 0;
43. end

44. end

45. end
46. return T ;

47. end function
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The function Choose Student(T (pj), lk) is used to choose a student with the
maximum value of g(st). Let X be the set of students such that X = T (pj),
where pj is full, or X = T (lk) where lk is full. For each st ∈ X, the algorithm
calculates the heuristic value of g(st) and returns a student st with the maximum
value of g(st).

The function Repair(pu, lk) is used to break blocking pairs satisfying the
condition of (3bi). When a project pu is removed, for each sk ∈ T (lk), if
Rsk(pu) < Rsk(pz), where pz = T (sk), then the algorithm removes (sk, pz)
and adds (sk, pu) into T . This process repeats for each project which is removed
until it cannot form blocking pairs.

If HAG reaches a stable matching but it is non-perfect matching, it gets stuck
at a local minimum. At each iteration, for each student si ∈ S, HAG proposes
a project pj ∈ P which is the minimum rank in si’s rank list and adds (si, pj)
into matching T . Since ties were given in lk’s rank list (pj is offered by lk), there
exists a different student su who prefers the most project pj or pz (pz is offered
by lk) where Rlk(su) = Rlk(si). When su applies to pj (pj is full) or pz (lk is
full), we keep (si, pj) and reject (su, pz) or (su, pj), then HAG can result in a
non-perfect matching. If we add (su, pz) or (su, pj) and remove (si, pj), HAG
can result in a perfect matching. This means that we can add (su, pz) or (su, pj)
and remove (si, pj), then si applies to other projects. Moreover, we can improve
stable matchings’ size by using the function Escape(T ). For each unassigned
student su ∈ S, the algorithm finds a project pz such that there exists a student
si where pj is assigned to si and v(su) ≥ v(si). Then, the algorithm replaces
(si, pj) by (su, pz) in T and increases the value of v(su). When pj is removed, it
can form blocking pairs with other students in T (lk), thus we call the function
Repair(pj , lk) to break blocking pairs. It should be noted that the condition
v(su) ≥ v(si) means that the number of replacements of su is higher than that
of si, i.e., su is prioritized to assign to pz ∈ lk. Accordingly, matching T is
unstable and si is an unassigned student, then si proposes other projects in si’s
rank list.

4 Performance Evaluation

In this section, we present several experiments to evaluate the efficiency of our
HAG algorithm. We compared the average execution time and solution qual-
ity found by HAG with those found by the approximation algorithm, named
APX [7] for solving MAX-SPA-ST problem of large sizes. We implemented
these algorithms by Matlab R2019a software on a system with Xeon-R Gold
6130 CPU 2.1 GHz computer with 16 GB RAM.

Datasets: To perform experiments, we adapted a random SMTI problem
generator [9] to generate SPA-ST instances with seven parameters (n, m, q, p1,
p2, C, D), where n is the number of students, m is the number of lecturers,
q is the number of projects, p1 is the probability of incompleteness, p2 is the
probability of ties, C is the total capacity of projects, denoted by C =

∑q
j=1 cj

where cj is the capacity of project pj offered by lecturer lk, D is the total capacity
of lecturers, denoted by D =

∑m
k=1 dk where dk is the capacity of each lecturer lk.
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4.1 Evaluate the Variation of Ties and Incompleteness

In this experiment, we evaluate the influence of the probability of p1 and p2
on the solution quality and execution time of HAG in comparison with APX.
We generated SPA-ST instances by letting parameters (n,m, q, p1, p2, C,D), in
which n ∈ {100, 200}, m = 0.05n, q = 0.1n, p1 ∈ [0.1, 0.8] and p2 ∈ [0.0, 1.0]
with step of 0.1. The total capacities of projects and lecturers are C = 1.2n,
and D = 1.1n, respectively. In addition, cj is distributed for each project pj ∈ P
such that 0.6C/q ≤ cj ≤ 1.4C/q and dk is set of each lecturer lk ∈ L such that
dk = D/m.
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Fig. 1. Average execution time and average number of iterations of HAG vs. APX

We first compare the average execution time and the average number of
iterations of HAG with APX for finding perfect matchings for n = 100 and
n = 200. Then, we average results based on values of p1 which is shown in Fig. 1.
Accordingly, we see that Figs. 1(a) and 1(c) show that HAG runs faster than
APX for n = 100 and n = 200 with every value of p2. When p2 increases from
0.0 to 0.9 for n = 100, HAG takes from 10−2.98(s) to 10−2.68(s), while APX
takes from 10−2.85(s) to 10−2.75(s), but when p2 = 1.0, the average execution
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time of HAG increases. When n = 200, the average execution time of HAG
increases from about 10−2.58(s) to 10−2.28(s), while APX takes from 10−2.23(s)
to 10−2.16(s). Figures 1(b) and 1(d) give the average number of iterations used
by HAG and APX for n = 100 and n = 200 with every p2. HAG needs fewer
iterations than APX for p2 from 0.0 to 0.9 for n = 100 and n = 200. This
explains that HAG runs much faster than APX as shown in Figs. 1(a) and 1(c).

Next, we compare the percentage of perfect matchings and average number
of unassigned students found by HAG and APX for every value of p1 and p2.
Our experimental results show that when p1 varies from 0.1 to 0.5 with step 0.1,
both HAG and APX result in perfect matchings approximately, therefore we
only show the results in Fig. 2 for values of p1 from 0.6 to 0.8 and every value of
p2.
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Fig. 2. Percentage of perfect matchings and number of unassigned students of HAG
vs. APX

Figure 2 shows that when p1 increases to 0.8, it is difficult for finding perfect
matchings, but HAG finds better the percentage of perfect matchings than that
found by APX. When p2 varies from 0.1 to 1.0, HAG finds a much higher
percentage of perfect matchings than APX as shown in Figs. 2(a) and 2(c).
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Figures 2(b) and 2(d) show the average number of unassigned students found
by HAG and APX. When p2 varies from 0.1 to 1.0, HAG obtains a much smaller
number of unassigned students than APX in non-perfect matchings. This means
that HAG finds better maximum stable matchings than APX when p1 increases
in this experiment.

4.2 Evaluate the Variation of the Problem of Large Sizes

In this experiment, we set n ∈ [1000, 10000] with step 1000, m ∈ [0.02n, 0.04n]
step 0.01, q = 0.1n, p1 = 0.9, and p2 = 0.5. The total capacity of projects and
lecturers is set in two cases as follows:

Case 1 : C = 1.4n and 0.7C ≤ D ≤ 0.9C, i.e., the capacity cj of each project
pj is bound by 0.6C/q ≤ cj ≤ 1.4C/q and the capacity dk of each lecturer lk

is bound by 0.7
∑|Pk|

k=1 cj ≤ dk ≤ 0.9
∑|Pk|

k=1 cj , where Pk is a set of projects pj
offered by lecturer lk.

Case 2 : C = 1.5n, and D = 1.2n, i.e., we distribute C to the capacity cj of
each project pj such that 0.6C/q ≤ cj ≤ 1.4C/q. Next, we set the capacity of
each lecturer lk to be dk = D/m.

HAG  m = 0.02n HAG  m = 0.03n HAG  m = 0.04n
APX m = 0.02n APX  m = 0.03n APX  m = 0.04n
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Fig. 3. Average execution time and average number of iterations HAG vs. APX
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When p1 = 0.9, 90% of projects or students do not rank in students’ rank lists
or lecturers’ rank lists, respectively. However, because the number of projects and
students is larger, both HAG and APX can find approximately 100% of perfect
matchings. Figure 3 shows that HAG runs faster from 10 to 80 times and needs
fewer iterations than APX in two cases of capacities.

5 Conclusions

This paper proposed an efficient heuristic algorithm HAG to solve the large size
MAX-SPA-ST problem. Our algorithm starts from an empty matching and
finds a solution for the problem based on two proposed heuristic functions to
improve the performance of the searching process. If the algorithm reaches a
non-perfect matching, we propose a heuristics strategy to increase the size of
the stable matching by suggesting unassigned students to projects in the same
ties with its partner in the current matching. Our experimental results show
that our algorithm overcomes the APX algorithm [7] in terms of execution time
and solution quality for the MAX-SPA-ST of large sizes. In the future, we will
extend this proposed approach to find strongly stable or super-stable matchings
for the SPA-ST problem [20].
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