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Abstract. Most of the previously known evaluation methods for deductive data-
bases are either breadth-first or depth-first (and recursive). There are cases when
these strategies are not the best ones. It is desirable to have an evaluation framework
for stratified Datalog¬ that is goal-driven, set-at-a-time (as opposed to tuple-at-a-
time) and adjustable w.r.t. flow-of-control strategies. These properties are impor-
tant for efficient query evaluation on large and complex deductive databases. In
this paper, by incorporating stratified negation into so-called query-subquery nets,
we develop an evaluation framework, called QSQN-STR, with such properties for
evaluating queries to stratified Datalog¬ databases. A variety of flow-of-control
strategies can be used for QSQN-STR. The generic evaluation method QSQN-STR
for stratified Datalog¬ is sound, complete and has a PTIME data complexity.
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1 INTRODUCTION

Datalog is a well-known rule-based query language for deductive databases. In [24],
Huang et al. wrote \we are witnessing an exciting revival of interest in recursive
Datalog queries in a variety of emerging application domains such as data inte-
gration, information extraction, networking, program analysis, security, and cloud
computing" (see also, e.g., [23, 7]). Datalog expresses the Horn fragment with the
safety condition1 and without function symbols of �rst-order logic and uses the tra-
ditional monotonic semantics. The extension Datalog¬ of Datalog allows expressing
non-monotonic queries by using negation in the bodies of program clauses. It uses
a non-monotonic semantics like the standard semantics for strati�ed Datalog¬ pro-
grams and the well-founded semantics for the general case. A Datalog¬ program is
strati�able if it can be divided into strata such that, if a negative literal of a predi-
cate p occurs in the body of a program clause in a stratum, then the clauses de�ning p
must belong to an earlier stratum. A deductive database consists of a Datalog/Da-
talog¬ program (for de�ning intensional predicates) and an instance of extensional
predicates.

This work studies query processing for strati�ed Datalog¬ databases. The topic
is worthy of consideration due to practical applications of deductive databases.

1.1 Related Work

Researchers have developed a number of evaluation methods for Datalog databases,
such as QSQ [43, 1], QSQR [43, 31], QoSaQ [44] and Magic-Sets [5, 6] (by Magic-
Sets we mean the evaluation method that combines the magic-set transformation
with the improved semi-naive evaluation method).

QSQ (Query-Subquery) [43, 1] is a framework for evaluating queries to Data-
log databases. Its approach is top-down (i.e., query processing is closely related
to the main goal) and set-at-a-time (i.e., operations are set-oriented but not tuple-
oriented). It implements a tabulation (tabling/memoing) technique by using so-
called input, answer and supplement relations to guarantee termination. Adorn-
ments for intensional predicates (and their corresponding input and answer rela-
tions) are used to enable exploiting relational operations like join and projection. In
general, QSQ uses adornments to simulate SLD-resolution in pushing constant sym-
bols from goals to subgoals. An enhanced version of QSQ, called annotated QSQ,
also uses annotations to simulate SLD-resolution in pushing repeats of variables
from goals to subgoals. A variety of 
ow-of-control strategies (which are similar to
search strategies and called control strategies for short) can be used for QSQ.

1 For a definition of the safety condition, see the paragraph after Definition 1.
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QSQR (QSQ Recursive), introduced by Vieille in [43], is a query evaluation
method for Datalog databases that follows the QSQ approach and uses a recursive
strategy. Roughly speaking, the strategy is depth-�rst, but due to tabulation, as
observed by Vieille [44], the QSQR approach is like iterative deepening search. The
versions of QSQR presented in [43, 1] are incomplete [31, 44, 29]. This is corrected
in [29] by using an outer loop that clears global input relations for each iteration.

In [44], Vieille introduced another method, called QoSaQ, for evaluating queries
to Datalog databases. It is an adaptation of SLD-AL resolution. The method can
be implemented as a set-oriented procedure, but as stated by Vieille himself, the
practical interest of the method lies in its one-inference-at-a-time basis, as opposed
to the set-at-a-time approach. The intention is to permit an advanced analysis of
the duplicate elimination issue.

The magic-sets technique [5, 6] simulates the top-down QSQ approach by rewrit-
ing the Datalog program together with the given query to another equivalent one
that when evaluated using a bottom-up technique (e.g., the improved semi-naive
evaluation) produces only facts produced by the QSQ evaluation. Adornments are
used as in the QSQ approach. To simulate annotations, the magic-sets transforma-
tion is augmented with subgoal recti�cation (see, e.g., [1]).

In [11, 9], we provided a framework called QSQN (Query-Subquery Nets) for
evaluating queries to Horn knowledge bases. It uses a parameter for the limit on the
nesting depths of terms occurring in the computation. When this limit is set to 0,
the framework can be used for evaluating queries to Datalog databases. QSQN is
an adaptation and a generalization of the QSQ approach for Horn knowledge bases.
One of the key di�erences is that it does not use adornments and annotations, but
uses substitutions instead. This is natural for the case with function symbols and
without the safety condition. Like QSQ, every control strategy can be used for
QSQN. The notion of query-subquery net makes a linkage to 
ow networks and is
intuitive for developing e�cient evaluation algorithms.

A top-down approach with tabulation for dealing with strati�ed Datalog¬ was
proposed in [26, 41, 37]. The evaluation procedures given in [26, 41, 37] are similar to
each other, with some di�erences as discussed in [37]. They are called \QSQR/SLS-
procedure" in [26, 37] and we will refer to them as the QSQR/SLS method. This
method relies on using a derivation forest (of global SLS-resolution) with tabulation
and is implemented using the recursive approach like QSQR.

In [37], apart from QSQR/SLS, Ross also proposed a bottom-up evaluation
method for strati�ed Datalog¬ by presenting a magic-sets transformation, which
simulates the top-down QSQR/SLS method, but the program obtained from the
transformation can be evaluated using a bottom-up technique. Programs obtained
from the transformation are not strati�ed Datalog¬ programs, as they use special
\literals" for checking whether the computation of the corresponding negative goals
has been completed.

In [4], Balbin et al. proposed another bottom-up evaluation method for strati-
�ed Datalog¬. Their method applies a magic-sets transformation and a bottom-up
computation with recursive calls for evaluating negative goals.
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The well-founded semantics is a commonly accepted choice for (general) Data-
log¬, as it coincides with the standard semantics for strati�ed Datalog¬, and using
it Datalog¬ has a PTIME data complexity. This semantics was �rst introduced by
Van Gelder et al. for normal logic programs [19] and can be characterized by the
alternating �xpoint [18]. Several calculi for normal logic programs that are sound
and complete w.r.t. the well-founded semantics have been developed. One of them is
SLG-resolution. In [15], Chen et al. presented e�cient techniques for implementing
SLG-resolution. Their method maintains positive and negative dependencies among
subgoals in a top-down evaluation, detects positive and negative loops, delays sub-
goals when possible loops occur, checks completion of subgoals and resumes their
activeness when possible. It is tuple-oriented and its implementation XSB [40] can
be used as an engine for in-memory Datalog¬ databases.

Kemp et al. [25] and Morishita [30] proposed bottom-up evaluation methods
for Datalog¬ under the well-founded semantics. Their methods are based on Van
Gelder’s alternating �xpoint characterization and use a magic-sets transformation
with adornments but without annotations.

In [14], together with a colleague we extended QSQN to obtain a method called
QSQN-WF for evaluating queries to Datalog¬ databases under the well-founded
semantics. It follows Przymusinski’s SLS-resolution [34], with Van Gelder’s alter-
nating �xpoint semantics [18] on the background, but uses a query-subquery net to
implement tabulation and the set-at-a-time technique.

1.2 Motivations

We �rst discuss some important aspects of query evaluation (in Sections 1.2.1{1.2.3),
and then state motivations of our work (in Section 1.2.4).

1.2.1 Adjustability w.r.t. Control Strategies

The techniques used for query evaluation are usually separated into two classes de-
pending on whether they focus on top-down or bottom-up evaluation [1]. Here,
\top-down" is understood as \goal-driven" (i.e., query processing is relevant to the
subgoals and therefore closely related to the main goal). As the bottom-up eval-
uation methods based on the magic-sets technique simulate the top-down evalua-
tion, they are also goal-driven. Since the terms \top-down" and \bottom-up" are
antonyms, it is better to classify top-down evaluation as goal-driven and character-
ize bottom-up evaluation methods by an additional property. Being goal-driven can
be treated as a requirement for e�cient evaluation methods.

The aforementioned bottom-up evaluation methods for Datalog [5, 6], strati�ed
Datalog¬ [37, 4] and Datalog¬ [25, 30] use a magic-sets transformation and a bottom-
up computation like the improved semi-naive evaluation. So, they can be charac-
terized as goal-driven and breadth-�rst (i.e., based on using a breadth-�rst control
strategy).2 On the other hand, the top-down evaluation methods QSQR [43, 31]

2 The naive evaluation can be described as follows: repeat applying all of the rules
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and QoSaQ [44] (for Datalog), QSQR/SLS [26, 41, 37] (for strati�ed Datalog¬)
and SLG-resolution [15, 40] (for normal logic programs and Datalog¬ databases)
can be characterized as goal-driven and depth-�rst.3 The frameworks QSQ [43, 1]
(for Datalog), QSQN [11, 9] (for Horn knowledge bases and Datalog databases)
and QSQN-WF [14] (for Datalog¬) follow the goal-driven approach but allow every
control strategy.

The breadth-�rst and depth-�rst approaches are just two among possible ap-
proaches. There are cases when they are not the best ones [11]. When developing
a framework for query evaluation one should make it general to a certain extent so
that a variety of control strategies can be used. In particular, it is desirable to be
able to control the computation 
ow dynamically.

1.2.2 Set-at-a-Time vs. Tuple-at-a-Time

The evaluation methods QoSaQ [44] (for Datalog) and SLG-resolution [15, 40] (for
normal logic programs and Datalog¬ databases) are tuple-at-a-time (tuple-oriented).
They use complex data structures for handling individual subgoals (tuples), and
when the extensional relations and the search space are too large, in-memory com-
putation may be impossible. XSB [40] is an e�cient engine for in-memory deduc-
tive databases due to the suspension-resumption mechanism, advantages of WAM
(Warren Abstract Machine) and other optimizations. Such techniques are highly
tuple-oriented. When the extensional relations are too large and the program de�n-
ing intensional predicates is sophisticated, accesses to the secondary storage may be
unavoidable, and the set-at-a-time approach is preferable.

Regarding the evaluation methods QSQR [43, 31] (for Datalog) and
QSQR/SLS [26, 41, 37] (for strati�ed Datalog¬), they can be implemented using
either the tuple-at-a-time approach or the set-at-a-time approach. But, using the
latter one the recursive strategy is unavoidable. As observed in [29, Remark 3.2],
using the recursive approach, input relations should be cleared occasionally (e.g., at
the beginning of each iteration of the main loop) in order to allow recomputations
using updated answer relations. This causes redundant computations.

1.2.3 Why Are Evaluation Methods for Stratified Datalog¬ Needed?

The question is rather \are the known evaluation methods for (general) Datalog¬
e�cient for evaluating queries to strati�ed Datalog¬ databases?". The general an-
swer is \they are not as e�cient as expected for that kind of tasks". The reason is
that they were developed to cope with unstrati�ed negation and are thus super
u-
ous. For example, the methods proposed in [25, 30, 14] are based on Van Gelder’s

sequentially, one after the other, until no new facts were derived during the last iteration.
Its approach is like breadth-first search. The improved semi-naive evaluation (see, e.g., [1])
shares this property.

3 The mentioned methods use a recursive control strategy, which is like the depth-first
search strategy implemented using recursive calls.
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alternating �xpoint characterization and use an (additional) outer loop to guarantee
that an alternating �xpoint can be reached. When applied to strati�ed Datalog¬,
that causes certain redundant (re)computations.

Apart from the well-founded semantics, the stable model semantics [20] is also
a well-known semantics for normal logic programs (see, e.g., the survey [3]). These
two semantics coincide for certain classes of logic programs [35, 16, 21], including
strati�ed logic programs and strati�ed Datalog¬ programs. The stable model se-
mantics is used for answer set programming (ASP), and systems like DLV [27],
NP Datalog [22] and clasp [17], which deal among others with ASP, can be used
for answering queries to strati�ed Datalog¬ databases. However, as the main aim of
ASP engines is to �nd an answer set (i.e., a stable model) for a given logic program,
they are not goal-driven and, in general, not as e�cient as expected for answering
queries to strati�ed Datalog¬ databases.

1.2.4 The Need for a New Evaluation Framework for Stratified Datalog¬

As discussed in Sections 1.1{1.2.3, the previously known methods that can be used
for evaluating queries to strati�ed Datalog¬ databases are:

� breadth-�rst [4, 37, 25, 30] or depth-�rst [26, 41, 37, 15, 40]; or/and
� tuple-at-a-time [15, 40]; or/and
� designed for (general) Datalog¬ [25, 30, 14] or normal logic programs [15, 40],

and not as e�cient as expected for strati�ed Datalog¬.

That is, none of the previously known evaluation methods is goal-driven, set-at-a-
time, adjustable w.r.t. control strategies, and designed specially for strati�ed Da-
talog¬ but not (general) Datalog¬. As these properties are important for e�cient
query evaluation on large and complex strati�ed Datalog¬ databases, it is desirable
to develop an evaluation framework for strati�ed Datalog¬ with such properties.

1.3 Our Contributions

In this paper, we provide a novel framework, called QSQN-STR, for evaluating
queries to strati�ed Datalog¬ databases. It extends the QSQN framework [11, 9]
with the ability to handle strati�ed negation (but is formulated for strati�ed Data-
log¬ databases instead of strati�ed knowledge bases in �rst-order logic). QSQN-STR
is goal-driven, set-at-a-time and allows a variety of control strategies. In partic-
ular, every control strategy \admissible w.r.t. strata’s stability" can be used for
QSQN-STR. Roughly speaking, the admissibility w.r.t. strata’s stability only re-
quires that the computation can check whether a (ground) negative goal �B of an
intensional predicate p succeeds by searching the answer relation of p only after the
(goal-driven) processing for the lower strata up to the stratum containing clauses
de�ning p has been completed. QSQN-STR uses a net of nodes that correspond to
input, answer and supplement relations like the ones used for QSQ [43, 1] but with-
out adornments. The net is constructed from the given strati�ed Datalog¬ program.
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It contains simple data structures that are needed for performing query evaluation.
At the abstract level, the skeleton of QSQN-STR is as follows:

while there are edges (u, v) such that u contains data to be processed for the
edge (u, v), do:

� select such an edge so that the selection is admissible w.r.t. strata’s sta-
bility;

� process the data at u to produce and transfer data through the edge (u, v).

As QSQN-STR allows every control strategy that is admissible w.r.t. strata’s
stability, it is really a framework. We also refer to it as a generic evaluation method
for strati�ed Datalog¬. This method is sound, complete and has a PTIME data
complexity.

What control strategies should be used for QSQN-STR is left for the implemen-
tation and experimentation phases. Besides, operations speci�ed for QSQN-STR
can be optimized at the implementation phase. We have implemented a prototype
of QSQN-STR in Java, using a control strategy named IDFS2, which is speci�ed
in [9]. The prototype has not yet been optimized. So, in general, it cannot compete
with highly optimized engines like XSB [40]. Nevertheless, we have performed exper-
iments and made a comparison between our prototype of QSQN-STR, DES-DBMS4

(version 5.0.1) and SWI-Prolog5 (version 6.4) w.r.t. the execution time by using
a number of tests. The experimental results show that our prototype of QSQN-STR
outperforms DES-DBMS by a few orders of magnitude for all of the tests. It is com-
petitive with SWI-Prolog for the tests for which SWI-Prolog can terminate properly.

This paper is a revised and extended/modi�ed version of the conference paper [8]
and a chapter of the �rst author’s PhD dissertation [9]. The QSQN-STR framework
presented in this paper is formulated for strati�ed Datalog¬ databases but not strat-
i�ed knowledge bases in �rst-order logic. It has been improved by allowing a larger
class of control strategies and adopting an essential optimization6. Consequently,
the proof of soundness and completeness has been updated. Furthermore, the pre-
sentation has been signi�cantly improved.

1.4 The Structure of This Paper

The rest of this paper is structured as follows. Section 2 recalls the most important
concepts and de�nitions. In Section 3, we give a new presentation of the QSQN
framework, which is thorough and more understandable than the one in [11, 9]. In
Section 4, we incorporate strati�ed negation into query-subquery nets and extend
QSQN to QSQN-STR. (To get the gist of QSQN-STR, the reader may watch
the demonstration [12] in the PowerPoint-like mode �rst.) Conclusions are given

4 The Datalog Education System (DES) with a DBMS via ODBC, available at http:

//des.sourceforge.net (see also, e.g., [39]).
5 Available at http://www.swi-prolog.org/
6 See the step 2a of fire′(u, v) in Definition 23.

http://des.sourceforge.net
http://des.sourceforge.net
http://www.swi-prolog.org/
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in Section 5. Due to the lack of space, our proofs and experimental results are
presented only in the online appendix [13].

2 PRELIMINARIES

We assume that the reader is familiar with basic notions of �rst-order logic. In this
section, we recall only the most important de�nitions and notions that are needed
for our work, which are based on [1, 2, 14, 23, 28, 33]. We refer the reader to [1, 28]
for further reading.

A signature for Datalog¬ consists of constants, variables and predicates. Each
predicate is classi�ed either as intensional or as extensional. Due to the absence of
function symbols, a term is de�ned to be either a constant or a variable. An atom
is an expression of the form p(t1, . . . , tn), where n � 0, p is an n-ary predicate
and each ti is a term. A literal is either an atom (called a positive literal) or the
negation of an atom (called a negative literal). Formulas are de�ned in the usual
way. An expression is a term, a tuple of terms, a formula without quanti�ers or a list
of formulas without quanti�ers. A simple expression is either a term or an atom.
An expression is ground if it does not contain variables.

2.1 Substitution and Unification

A substitution is a �nite set θ = fx1/t1, . . . , xk/tkg, where x1, . . . , xk are pairwise
distinct variables, t1, . . . , tk are terms, and ti 6= xi for all 1 � i � k. The set
dom(θ) = fx1, . . . , xkg is called the domain of θ, and range(θ) = ft1, . . . , tkg the
range of θ. The restriction of a substitution θ to a set X of variables is the substi-
tution θ|X = f(x/t) 2 θ j x 2 Xg. By ε we denote the empty substitution.

Given an expression E and a substitution θ = fx1/t1, . . . , xk/tkg, the instance
of E by θ, denoted by Eθ, is de�ned to be the expression obtained from E by
simultaneously replacing every occurrence of xi in E by ti, for all 1 � i � k.

Given substitutions θ = fx1/t1, . . . , xk/tkg and δ = fy1/s1, . . . , yh/shg, the
composition θδ of θ and δ is de�ned to be the substitution obtained from the
sequence fx1/(t1δ), . . . , xk/(tkδ), y1/s1, . . . , yh/shg by deleting any binding xi/(tiδ)
with xi = (tiδ) and deleting any binding yj/sj with yj 2 fx1, . . . , xkg.

A substitution θ is idempotent if θθ = θ. It is known that θ = fx1/t1, . . . , xk/tkg
is idempotent if and only if none of x1, . . . , xk occurs in any t1, . . . , tk. If θ and δ are
substitutions such that θδ = δθ = ε, then we call them renaming substitutions.
A substitution θ is more general than a substitution δ if there exists a substitu-
tion γ such that δ = θγ. According to this de�nition, θ is more general than
itself.

Let � be a set of simple expressions. A substitution θ is called a uni�er for � if
�θ is a singleton. If �θ = fϕg, then we say that θ uni�es � (into ϕ). A uni�er θ for
� is called a most general uni�er (mgu) for � if θ is more general than every uni�er
of �. There is an e�ective algorithm, called the uni�cation algorithm, for checking
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whether a set � of simple expressions is uni�able (i.e., has a uni�er) and computing
an idempotent mgu for � if � is uni�able (see, e.g., [28]).

2.2 Stratified Datalog¬

We recall here the de�nition of databases in Datalog and (strati�ed) Datalog¬.

Definition 1. A safe Datalog¬ program clause (w.r.t. the leftmost selection func-
tion) has the form A B1, . . . , Bk, with k � 0, and satis�es the following conditions:

1. A is an atom and each Bi is a literal, where negation is denoted by �,
2. every variable occurring in A also occurs in (B1, . . . , Bk),
3. every variable occurring in a negative literal Bj also occurs in some positive

literal Bi with 1 � i < j.

The atom A is called the head and (B1, . . . , Bk) the body of the program clause.
When k = 0, the body is empty and the clause can be written without  . If p is
the predicate of A, then the program clause is called a program clause de�ning p.
Such a program clause is treated as an expression (so we can talk about its in-
stances).

A safe Datalog¬ program (w.r.t. the leftmost selection function) is a �nite set of
safe Datalog¬ program clauses. A safe Datalog¬ program without negative literals
in the clauses’ bodies is called a safe Datalog program. From now on, by a Da-
talog¬ (resp. Datalog) program we mean a safe Datalog¬ (resp. Datalog) program.
The second and third conditions in De�nition 1 are called the safety condition of
Datalog¬. The second condition itself is also called the safety condition of Datalog.

Given a Datalog¬ program P , a strati�cation of P is a partition P = P1[. . .[Pn
such that, for each 1 � i � n, we have that:7

� if an intensional predicate p occurs in a positive literal in the body of a clause
from Pi, then the clauses de�ning p must belong to P1 [ . . . [ Pi,
� if an intensional predicate p occurs in a negative literal in the body of a clause

from Pi, then i > 1 and the clauses de�ning p must belong to P1 [ . . . [ Pi−1.

Each Pi is called a stratum of the strati�cation. A Datalog¬ program is called
a strati�ed Datalog¬ program if it has a strati�cation.

An instance of extensional predicates is a mapping I that associates each exten-
sional n-ary predicate p to a �nite set I(p) of n-ary tuples of constants. Sometimes,
I is treated as the set fp(t) j t 2 I(p)g and each p(t) 2 I is treated as the program
clause p(t) . The size of I is de�ned to be the cardinality of the mentioned set.

A Datalog¬ (resp. Datalog) database is a pair (P, I), where P is a Datalog¬
(resp. Datalog) program consisting of clauses de�ning intensional predicates and I is
an instance of extensional predicates. A strati�ed Datalog¬ database is a Datalog¬
database (P, I) with P being a strati�ed Datalog¬ program.

7 All of the sets P1, . . . , Pn are assumed to be non-empty.
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2.3 The Standard Semantics of Stratified Datalog¬

In this subsection, let (P, I) be a strati�ed Datalog¬ database. The Herbrand uni-
verse of (P, I), denoted by UP;I , is the set of all constants occurring in (P, I). The
Herbrand base of (P, I), denoted by BP;I , is the set of all ground atoms of the
form p(t1, . . . , tn), where p is a predicate used in (P, I) and each ti belongs to UP;I .
A Herbrand interpretation for (P, I) is a subset of BP;I .

If I is a Herbrand interpretation and p(t) a ground atom, then by I(p(t)) we
denote that p(t) 2 I, and by I(�p(t)) we denote that p(t) /2 I.

Let ground(P [ I) be the set of all ground instances of clauses in P [ I, and I
a Herbrand interpretation for (P, I). The immediate consequence operator of (P, I),
denoted by TP;I , is de�ned on I as follows:

TP;I(I) = fA j A B1, . . . , Bk 2 ground(P [ I) and I(Bi) holds for all 1 � i � kg.

Let TP;I " ω be de�ned as follows:

TP;I " 0 = I,

TP;I " (n+ 1) = TP;I(TP;I " n) [ TP;I " n, for n 2 N,

TP;I " ω =
!⋃

n=0

TP;I " n.

Let P1 [ . . . [ Pn be a strati�cation of P . We de�ne

M∅;I = I,

MP1;I = TP1;I " ω,

MP1∪P2;I = TP2;MP1;I " ω,

...

MP1∪:::∪Pn;I = TPn;MP1∪:::∪Pn−1;I " ω.

We call MP;I = MP1∪:::∪Pn;I the standard Herbrand model of (P, I).
It can be shown that the standard Herbrand model of (P, I) does not depend

on the chosen strati�cation of P (see, e.g., [2, Theorem 11]).

Example 1. Consider the strati�ed Datalog¬ database (P, I) given below, where
P is a modi�ed version of a Datalog¬ program given in [36], path and acyclic are
intensional predicates, edge is an extensional predicate, x, y and z are variables and
a{f are constants. An atom edge(x, y) means that there is an edge from the node
x to the node y. An atom path(x, y) means that there exists a path (consisting of
edges) that connects the node x to the node y. An atom acyclic(x, y) means that
the node x is connected by a path to the node y, but not vice versa.
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� P consists of the following clauses:

path(x, y)  edge(x, y),

path(x, y)  path(x, z), edge(z, y),

acyclic(x, y)  path(x, y), �path(y, x).

� I is speci�ed and illustrated as follows: I(edge) = f(a, b), (a, c), (c, d), (d, a)g.?>=<89:;b?>=<89:;a
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The only strati�cation of P is P1 [ P2, where:

P1 : path(x, y) edge(x, y),
path(x, y) path(x, z), edge(z, y),

P2 : acyclic(x, y) path(x, y), �path(y, x).

The standard Herbrand model MP;I of (P, I) is constructed as follows:

M∅;I = I,

MP1;I = M∅;I [ fpath(x, y) j (x, y) 2 fa, c, dg � fa, b, c, dgg,

MP1∪P2;I = MP1;I [ facyclic(a, b), acyclic(c, b), acyclic(d, b)g.

Thus, MP;I = MP1∪P2;I is the standard Herbrand model of (P, I).

We de�ne a query to a strati�ed Datalog¬ database (P, I) to be a formula of the
form q(x), where q is an intensional predicate and x is a tuple of pairwise distinct
variables (of the same arity as q). A correct answer for a query q(x) to a strati�ed
Datalog¬ database (P, I) is a tuple t of constants of the same arity as x such that
q(t) 2MP;I . The data complexity of an algorithm for computing all (correct) answers
for a query q(x) to a strati�ed Datalog¬ database (P, I) is measured in the size of I.

Remark 1. Note that, if ϕ can be the body of a Datalog¬ program clause, then it
can be treated as a query to a strati�ed Datalog¬ database (P, I) by adding to P
a new program clause q(x) ϕ to obtain P ′, where q is a new intensional predicate
and x consists of all the variables occurring in ϕ, and then using the query q(x) to
the strati�ed Datalog¬ database (P ′, I).
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2.4 SLD-Resolution

SLD-resolution [2, 28] is a calculus for the Horn fragment of �rst-order logic, which
is more general than Datalog in that function symbols are allowed and program
clauses do not need to satisfy the safety condition. In this subsection, we recall
a formulation of SLD-resolution for Datalog, which is useful for our introduction of
QSQN in the next section.

If E is an expression or a substitution, then byVars(E) we denote the set of all
variables occurring inE. We say that an expressionE is a variant of an expression
E 0 if there exist renaming substitutions� and 
 such that E = E 0� and E 0 = E
 .
In a computational process, afresh variant of ' , where' can be a term, a tuple of
terms, an atom or a program clauseA  B1; : : : ; Bk , is '� , where � is a renaming
substitution such that dom(� ) = Vars(' ) and range(� ) consists of variables that
were not used earlier in the computation.

A goal (without negation) has the form  B1; : : : ; Bk , where B1; : : : ; Bk are
atoms. If k = 0, then the goal is called theempty goaland denoted by� .

A goal G0 is derived from a goal G =  A1; : : : ; Ai ; : : : ; Ak and a Datalog
program clause' = ( A  B1; : : : ; Bh) using an mgu� and the selected atomA i

if � is an mgu forA i and A, and G0 =  (A1; : : : ; Ai � 1; B1; : : : ; Bh; A i +1 ; : : : ; Ak)� .
In that case, G0 is called aresolvent of G and ' . If i = 1, then we say that G0 is
derived from G and ' using the leftmost selection function.

In the rest of this subsection, letP be a Datalog program andG a goal.
An SLD-derivation from P [ f Gg consists of a (�nite or in�nite) sequenceG0 =

G, G1, G2, . . . of goals, a sequence' 1; ' 2; : : : of variants of program clauses ofP
and a sequence� 1; � 2; : : : of mgu's such that eachGi +1 is derived fromGi and ' i +1

using � i +1 . Each ' i is called aninput program clause.
When constructing an SLD-derivation, for generality and clarity, it is assumed

that each ' i does not have any variable that already appears in the derivation up
to Gi � 1. The simplest way to guarantee this is to choose each' i as a fresh variant
of a program clause fromP.

An SLD-refutation of P [ f Gg is a �nite SLD-derivation from P [ f Gg with
the empty goal as the last goal in the derivation.

A computed answer� for P [ f Gg is the substitution obtained by restricting the
composition� 1 : : : � n to the variables ofG, where� 1; : : : ; � n is the sequence of mgu's
occurring in an SLD-refutation ofP [ f Gg.

3 QUERY-SUBQUERY NETS REVISITED

The notion of query-subquery net and the related evaluation framework QSQN for
evaluating queries to Horn knowledge bases were introduced by us in [11, 9]. They
can be used for evaluating queries to Datalog databases by setting the term-depth
limit to 0. In this section, we present a thorough and more understandable descrip-
tion of QSQN by using a running example and relating QSQN to SLD-resolution
with tabulation.



Incorporating Stratified Negation into Query-Subquery Nets 55
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