
Integrating Multi-threading into
Query-Subquery Nets

Son Thanh Cao(B), Phan Anh Phong, and Le Quoc Anh

School of Engineering and Technology, Vinh University, 182 Le Duan Street,
Vinh, Nghe An, Vietnam

{sonct,phongpa,anhlq}@vinhuni.edu.vn

Abstract. In this paper, we propose a new method, named QSQN-MT,
for the evaluation of queries to Horn knowledge bases. Particularly, we
integrate multi-threading into query-subquery nets to reduce the execu-
tion time for evaluating a query over a logic program regardless of the
order of clauses. The usefulness of the proposed method is indicated by
the experimental results.

Keywords: Horn knowledge bases · Query processing · Deductive
databases · QSQN · QSQN-MT · Multi-threading

1 Introduction

In first-order logic (FOL), the Horn fragment has received much attention from
researchers because of its important roles in the logic programming and deductive
database communities. Horn knowledge bases (Horn KBs) are an extension of
Datalog deductive databases [1]. Various methods have been arised for Datalog
or Horn KBs such as (i) the top-down methods including QSQ [14], QSQR [9],
QSQN [5,11] and (ii) the bottom-up method including Magic-Set [2].

Normally, clauses in a logic program are processed in order. This means that
a clause is executed when the processing of preceding clauses has finished. Par-
ticularly, there is always only one process being executed at a specific time.
Multi-threading has been adopted in logic program implementations in order
to improve the execution time [10,12,13]. By using multi-threading, we can per-
form multiple operations at once (simultaneously) in a program. This integration
allows a single processor to share multiple and concurrent threads. Each thread
executes its own sequence of instructions or clauses.

Example 1. When executing a logic program, the order of clauses in this pro-
gram may be important and can affect the execution time to find solutions.
For instance, consider the logic program P including (i) intensional predicates:
reachable, reachable1, reachable2 and reachable3; (ii) extensional predicates:
link1, link2, and link3; (iii) variables: x, y and z; (iv) constant symbols: ai, bi
and ci; and (v) a natural number: n.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
D.-T. Tran et al. (Eds.): ICISN 2021, LNNS 243, pp. 189–196, 2021.
https://doi.org/10.1007/978-981-16-2094-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2094-2_24&domain=pdf
https://doi.org/10.1007/978-981-16-2094-2_24


190 S. T. Cao et al.

– the logic program P (for defining reachable, reachable1, reachable2 and
reachable3):

reachable(x, y) ← reachable1(x, y) (1)
reachable(x, y) ← reachable2(x, y) (2)
reachable(x, y) ← reachable3(x, y) (3)
reachable1(x, y) ← link1(x, y) (4)
reachable1(x, y) ← link1(x, z), reachable1(z, y) (5)
reachable2(x, y) ← link2(x, y) (6)
reachable2(x, y) ← link2(x, z), reachable2(z, y) (7)
reachable3(x, y) ← link3(x, y) (8)
reachable3(x, y) ← link3(x, z), reachable3(z, y). (9)

– the extensional instance I (for specifying link1, link2 and link3) is demonstrated
in Fig. 1),

– the query: reachable(a0, an). �

a0

link1 link2
link2

a1

link1

b1,1

link2

. . . b1,n

link2

c1,1

link3

link3
c1,2 . . . c1,n

a2 b2,1 . . . b2,n c2,1 c2,2 . . . c2,n

...
...

...
...

...
...

...
...

an−1

link1 link2

bn−1,1 . . . bn−1,n

link2

cn−1,1 cn−1,2 . . . cn−1,n

an cn,1 cn,2 . . . cn,n

(a) (b) (c)

Fig. 1. The extensional instance I: (a) I(link1), (b) I(link2), and (c) I(link3).

As can easily be seen in Fig. 1, the relation link1 (reps. link2 and link3)
contains n (reps. n2 and 2(n2 − n)) instances. For instance, if n = 100 then
the relations link1, link2 and link3 include 100, 10000 and 19800 instances,
respectively. The relations link1 and link2 contain instances related to answer
the query reachable(a0, an) but the relation link3 does not.

Normally, a logic program is executed sequentially until getting results (e.g.,
the order of executing the program P is a sequence of the clauses (1), (2) and (3),



Integrating Multi-threading into Query-Subquery Nets 191

together with the related ones). The question is, what will happen if we swap the
order of program clauses in P so that the clause (2) is executed first? Clearly, this
takes a long time to get the answer for the mentioned query since the size (i.e.,
the number of instances) of relation link2 (which is defined by the clauses (6)
and (7)) is much bigger than link1 (which is defined by the clauses (4) and (5)).
It is worth studying how to compute the answers to a query over a logic program
regardless of the order of program clauses.

In this paper, we integrate multi-threading into QSQN framework to develop
a new method for evaluating queries to Horn KBs, named QSQN-MT. Our inten-
tion is to reduce the execution time for evaluating a query over a logic program
regardless of the order of clauses in this program. The experimental results indi-
cate the outperformance of the QSQN-MT method. Due to space limitations,
the reader could refer to [5,8] for the basic notions and definitions such as term,
atom, substitution, predicate, unification, Horn KBs, query and other related
ones. The rest of the paper is structured as follows. Sect. 2 outlines an overview
of QSQN1 and presents a new method called QSQN-MT. The tested results are
provided in Sect. 3. Section 4 gives conclusions of the paper.

2 Query-Subquery Nets with Multi-threading

In this section, we first give an overview of the QSQN method and then present
a new method for evaluating queries to Horn KBs, named QSQN-MT.

2.1 An Overview of Query-Subquery Nets

In [5,11], Nguyen and Cao formulated a framework query-subquery net, which
is used to develop methods for evaluating queries to Horn KBs with the inten-
sion of improving the efficiency of query processing by (i) decreasing redun-
dant computation, (ii) increasing flexibility, and (iii) minimizing the number of
read/write operations to disk. Using this framework, we proposed an evaluation
method named QSQN. The method is goal-directed, set-at-a-time, and has been
developed to allow dividing the query processing into smaller steps to maxi-
mize adjustability (i.e., we can apply various flow-of-control strategies in QSQN,
which are similar to search strategies in a graph and called control strategies
for short). In particular, the given logic program is transformed into a corre-
sponding net structure, which is used to specify set of tuples/subqueries in each
node should be processed at each step. The proofs given in [3] showed that the
QSQN evaluation method (as well as its extensions) is sound, complete and has
PTIME data complexity with a condition of fixing the term-depth bound. For
a more explanation of running example and relating QSQN to SLD-Resolution
with tabulation, the reader could refer to [6, Section 3] for further reading. The
other definitions related to QSQN structure, QSQN and a subquery are provided

1 A demonstration in the PowerPoint-like mode to help the readers figure out the gist
of QSQN is provided in [4].



192 S. T. Cao et al.

in [11]. Also, to help the readers figure out the gist of QSQN, a detailed demon-
stration in the PowerPoint-like mode is provided in [4]. The experimental results
shown in [3,6] indicate the usefulness of the QSQN evaluation method and its
extensions.

2.2 Integrating Multi-threading into Query-Subquery Nets

In this subsection, we present an extension of the QSQN method proposed in [11]
by integrating multi-threading into QSQN forming a new evaluation method
called QSQN-MT.

The definition of a QSQN-MT structure (reps. QSQN-MT) is analogous to
the definition of QSQN structure (reps. QSQN). Due to space limitations, we
omit to present the details for brevity. We refer the reader to [5,11] for fur-
ther understanding. In [5], we proposed an algorithm for evaluating queries to
Horn KBs. We now present an extension of this algorithm to deal with multi-
threading. From now on in this section, a logic program is denoted by P .

Algorithm 1: evaluating the query (P, q(x)) on EDB instance I.

1 initialize a QSQN-MT of P and related ones;

2 let n be the number of threads detected;
3 for i = 0 to n − 1 do
4 thread[i] = new Thread(); // initialize the thread i

5 for i = 0 to n − 1 do
6 thread[i].start(); // excute the procedure run(i) for thread i

7 for i = 0 to n − 1 do
8 thread[i].join(); // wait until sub-threads finish

9 return the results.

Procedure run(i)
Purpose: running the thread i.

1 while there exists (u, v) ∈ E w.r.t. thread i s.t. active-edge(u, v) returns true
do

2 select (u, v) ∈ E w.r.t. thread i s.t. active-edge(u, v) return true;
// arbitrary control strategies for the selection of (u, v)

3 fire(u, v);

Algorithm 1 describes steps of the QSQN-MT evaluation method for
Horn KBs, which is a modified version of the one given in [5] for QSQN by inte-
grating multi-threading into QSQN. The algorithm first automatically detects
the number of threads and then concurrently executes these threads until get-
ting results (the method start() in the step 6 of Algorithm 1 calls the procedure
run(i ) w.r.t. the thread i). Each thread represents a flow-of-control strategies
in QSQN-MT.

The procedure run (on page 4) uses the function active-edge(u, v) (specified
in [5]). For an edge (u, v), the function active-edge(u, v) returns true if there



Integrating Multi-threading into Query-Subquery Nets 193

reachable(x, y) ← reachable1(x, y) (1)

Th
re

ad
 0reachable(x, y) ← reachable2(x, y) (2)

Th
re

ad
 1

reachable(x, y) ← reachable3(x, y) (3)

Th
re

ad
 2

reachable1(x, y) ← link1(x, y) (4)

reachable1(x, y) ← link1(x, z), reachable1(z, y) (5)

reachable2(x, y) ← link2(x, y) (6)

reachable2(x, y) ← link2(x, z), reachable2(z, y) (7)

reachable3(x, y) ← link3(x, y) (8)

reachable3(x, y) ← link3(x, z), reachable3(z, y) (9)

Fig. 2. An example of splitting the program P stated in Example 1 into 3 threads.

are some collected data in u (i.e., tuples or subqueries) that can be evaluated to
generate data and transfer through (u, v), otherwise, this function returns false.
If active-edge(u, v) returns true, the procedure fire(u, v) (specified in [5])
will evaluate unprocessed data collected in u and then transfer relevant data
through (u, v). The procedure fire(u, v) calls the procedure transfer(D,u, v)
(stated in [5]), which is used to determine the effectiveness of transferring data
D through (u, v). These functions and procedures are also used for QSQN-MT.

An example of splitting the program P given in Example 1 into 3 threads is
illustrated in Fig. 2. The first thread (thread 0) includes clauses (1), (4) and (5)
of P . The second thread (thread 1) consists of clauses (2), (6) and (7) of P .
The last one (thread 2) includes clauses (3), (8) and (9) of P . These threads
run concurrently and independently of each other. Hence, some threads may
run faster than others w.r.t. the execution time according to the size of EDB
relations.

3 Preliminary Experiments

In [6], we have made a comparison between QSQN (together with its extensions)
and DES-DBMS2 as well as SWI-Prolog w.r.t the execution time. The exper-
imental results described in [6] indicate the usefulness of QSQN as well as its
extensions.

3.1 Experimental Settings

We have implemented prototypes of QSQN and QSQN-MT in Java, using a
control strategy name IDFS proposed in [3], which is intuitively demonstrated
in [4]. These prototypes use extensional relations which are stored in a MySQL

2 The Datalog Education System (DES), a deductive database system with a DBMS
via ODBC, available at http://des.sourceforge.net.

http://des.sourceforge.net


194 S. T. Cao et al.

database. All the tests were executed on the Microsoft Windows 10 (64 bit)
platform with Intel(R) Core(TM) i3-2350M CPU @ 2×2.30 GHz and 8GB of
RAM. The current prototypes of QSQN and QSQN-MT allow to evaluate the
query of the following syntax: q(t), in which, t is a tuple of terms. For the
query that has one answer being either true or false (e.g., reachable(a0, an)), we
use a flag to break the computation at the time getting the true answer. The
package [4] also contains all of the below tests as well as prototypes of QSQN
and QSQN-MT.

Reconsider the program P and the EDB instance I specified in Example 1. As
mentioned, the clauses (4) and (5) (reps. (6), (7) and (8), (9)) are used for defining
clause (1) (reps. (2) and (3), respectively). Thus, the program is executed mainly
based on the order of clauses (1), (2) and (3). We examine the tests specified by
changing the order of the first three rules of program clauses in P as follows: Test 1
((1), (2), (3)); Test 2 ((2), (1), (3)) and Test 3 ((3), (2), (1)). Each test is performed
with the query reachable(a0, an) using the following values of n: 20, 40, 60, 80 and
100, respectively.

3.2 Experimental Results

Figure 3 illustrates a comparison between our prototype of QSQN-MT and
QSQN w.r.t. the execution time for Tests 1–3. We have executed each test case
ten times to measure the execution time in milliseconds and averaged the results.
To provide better data visualization, the average execution time of each method
reported in Fig. 3 was converted to log10.

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

8.
0

20
40

60
80

10
0

Execution time (log10)
Te

st
 1

Q
SQ

N
Q
SQ

N
-M

T

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

8.
0

20
40

60
80

10
0

Execution time (log10)

Te
st

 2

Q
SQ

N
Q
SQ

N
-M

T

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

8.
0

20
40

60
80

10
0

Execution time (log10)

Te
st

 3

Q
SQ

N
Q
SQ

N
-M

T

n nn

Fig. 3. Experimental results for Tests 1, 2 and 3.

As can be seen in Fig. 3 for Tests 1, 2 and 3, the execution time for the QSQN
method is different when the order of program clauses are changed. In Test 1, the



Integrating Multi-threading into Query-Subquery Nets 195

QSQN-MT method takes a little bit more time than the QSQN method since it
has to wait until all threads terminate. In all mentioned tests, when integrating
multi-threading in QSQN, the execution time of the QSQN-MT is almost the
same regardless of the order of program clauses.

4 Conclusions

A method, named QSQN-MT, for evaluating queries over a logic program has
been proposed. With multi-threading, the logic program does multiple tasks con-
currently in order to increase the performance. The results of experiments indi-
cated that QSQN together with multi-threading can make the proposed method
performs better than it would be with a single thread. The flow of answering a
query using multi-threading in QSQN can be treated as a control strategy, thus
QSQN-MT inherits all good properties of QSQN such that: goal-directed, set-at-
a-time, sound, complete and having PTIME data complexity. Of course, having
multiple threads is not always efficient and there are many other issues related
to multi-threading that we need to be concerned about. As future work, we will
make a comparison between the proposed method and other related applications
as well as apply our method in parallel computation with multi-processors [7].

Acknowledgments. We are extremely grateful to dr hab. L.A. Nguyen from the
Institute of Informatics, University of Warsaw, Poland for his helpful comments.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley
(1995)

2. Beeri, C., Ramakrishnan, R.: On the power of magic. J. Log. Program. 10, 255–299
(1991)

3. Cao, S.T.: Methods for evaluating queries to Horn knowledge bases in first-order
logic. Ph.D. dissertation. University of Warsaw (2016). http://mimuw.edu.pl/
∼sonct/stc-thesis.pdf

4. Cao, S.T.: A prototype implemented in Java of the QSQN and QSQN-MT evalu-
ation methods (2020). http://mimuw.edu.pl/∼sonct/QSQN-MT.zip

5. Cao, S.T., Nguyen, L.A.: Query-subquery nets for Horn knowledge bases in first-
order logic. J. Inf. Telecommun. 1(1), 77–99 (2017)

6. Cao, S.T., Nguyen, L.A.: Incorporating stratified negation into query-subquery
nets for evaluating queries to stratified deductive databases. Comput. Inform. 38,
19–56 (2019)

7. Fidjeland, A.K., Luk, W., Muggleton, S.H.: Customisable multi-processor accel-
eration of inductive logic programming. In: Latest Advances in Inductive Logic
Programming, pp. 123–141 (2014)

8. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer (1987)
9. Madalińska-Bugaj, E., Nguyen, L.A.: A generalized QSQR evaluation method for

Horn knowledge bases. ACM Trans. Comput. Log. 13(4), 32 (2012)

http://mimuw.edu.pl/~sonct/stc-thesis.pdf
http://mimuw.edu.pl/~sonct/stc-thesis.pdf
http://mimuw.edu.pl/~sonct/QSQN-MT.zip


196 S. T. Cao et al.

10. Marques, R., Swift, T., Cunha, J.: Extending tabled logic programming with multi-
threading : a systems perspective. In: Proceedings of CICLOPS 2008, pp. 91–106
(2008)

11. Nguyen, L.A., Cao, S.T.: Query-subquery nets. In: Proceedings of ICCCI 2012.
LNCS, vol. 7635, pp. 239–248. Springer (2012)

12. Taokok, S., Pongpanich, P., Kerdprasop, N., Kerdprasop, K.: A multi-threading in
prolog to implement K-mean clustering. In: Latest Advances in Systems Science
and Computational Intelligence, pp. 120–126. WSEAS Press (2012)

13. Umeda, M., Katamine, K., Nagasawa, I., Hashimoto, M., Takata, O.: Multi-
threading inside prolog for knowledge-based enterprise applications. In: Proceed-
ings of INAP 2005, pp. 200–214. Springer (2005)

14. Vieille, L.: Recursive axioms in deductive databases: the query/subquery approach.
In: Proceedings of Expert Database Systems, pp. 179–193 (1986)


	Integrating Multi-threading into Query-Subquery Nets
	1 Introduction
	2 Query-Subquery Nets with Multi-threading
	2.1 An Overview of Query-Subquery Nets
	2.2 Integrating Multi-threading into Query-Subquery Nets

	3 Preliminary Experiments
	3.1 Experimental Settings
	3.2 Experimental Results

	4 Conclusions
	References




