
A Heuristic Repair Algorithm
for the Maximum Stable Marriage

Problem with Ties and Incomplete Lists

Hoang Huu Viet1, Nguyen Thi Uyen1, Son Thanh Cao1,
and TaeChoong Chung2(B)

1 School of Engineering and Technology, Vinh University, Vinh City, Vietnam
{viethh,uyennt,sonct}@vinhuni.edu.vn

2 Department of Computer Engineering, Kyung Hee University, Yongin, South Korea
tcchung@khu.ac.kr

Abstract. This paper proposes a heuristic repair algorithm to find a
maximum weakly stable matching for the stable marriage problem with
ties and incomplete lists. Our algorithm is designed including a well-
known Gale-Shapley algorithm to find a stable matching for the stable
marriage problem with ties and incomplete lists and a heuristic repair
function to improve the found stable matching in terms of maximum
size. Experimental results for large randomly generated instances of the
problem showed that our algorithm is efficient in terms of both execution
time and solution quality for solving the problem.

Keywords: Gale-Shapley algorithm · Heuristic repair · SMTI ·
Stable marriage problem

1 Introduction

The stable marriage problem with ties and incomplete lists (SMTI) [13,15] is an
extension of the stable marriage (SM) problem [7]. The SMTI problem is a well-
known matching problem and recently, it has been attracting much attention
from the research community due to its important role in a wide range of appli-
cations such as the Hospitals/Residents with Ties (HRT) problem [2,11,17],
the Student-Project Allocation (SPA) problem [1,6] or the Stable Marriage and
Roommates (SMR) problem [4,5].

An SMTI instance of size n comprises a set of men, denoted by M =
{m1,m2, · · · ,mn}, and a set of women, denoted by W = {w1, w2, · · · , wn},
in which each person has a preference list to rank some members of the oppo-
site sex in an order of preference, meaning that a mi’s/wi’s preference list may
include ties and be incomplete. If a man mi ∈ M is ranked by a woman wj ∈ W
and vice versa, then mi and wj are called acceptable to each other, or (mi, wj) is
an acceptable pair. We denote the rank of wj in mi’s preference list by rmi

(wj)
and the rank of mi in wj ’s preference list by and rwj

(mi). Thus, if (mi, wj) is
an acceptable pair, then rmi

(wj) > 0 and rwj
(mi) > 0. If a man mi strictly

c© Springer Nature Switzerland AG 2022
G. Long et al. (Eds.): AI 2021, LNAI 13151, pp. 494–506, 2022.
https://doi.org/10.1007/978-3-030-97546-3_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97546-3_40&domain=pdf
https://doi.org/10.1007/978-3-030-97546-3_40

A Heuristic Repair Algorithm for the MAX-SMTI 495

prefers a woman wj to a woman wk, then we denote by rmi
(wj) < rmi

(wk).
If a man mi prefers a woman wj and a woman wk equally, then we denote by
rmi

(wj) = rmi
(wk). We use similar notations for the women’ preference lists.

A matching Γ of an SMTI instance is a set of acceptable pairs (mi, wj),
(mi, ∅), or (∅, wj), meaning that each mi or wj belongs to at most one pair.
If (mi, wj) ∈ Γ , then mi and wj are called partners in Γ , denoted by Γ (mi) =
wj and Γ (wj) = mi. If Γ (mi) = ∅ or Γ (wj) = ∅, then mi or wj is called
single in Γ , respectively. A matching Γ is called weakly stable if it admits no
blocking pair, where a pair (mi, wj) is blocking for Γ if (a) rmi

(wj) > 0 and
rwj

(mi) > 0; (b) Γ (mi) = ∅ or rmi
(wj) < rmi

(Γ (mi)); and (c) Γ (wj) = ∅

or rwj
(mi) < rwj

(Γ (wj)). Otherwise, it is called unstable. The size of a weakly
stable matching Γ , denoted by |Γ |, is the number of pairs (mi, wj) ∈ Γ . If
|Γ | = n, then Γ is called perfect, otherwise, Γ is called non-perfect.

Irving et al. [12] showed that weakly stable matchings of an SMTI instance
have different sizes. In order for every person paired, we need to find a matching
that is not only weakly stable but also of maximum size. This problem is known
as MAX-SMTI [10,15] and NP-hard [12,13] and therefore, finding an efficient
algorithm to solve the problem of large sizes is a challenge for researchers.

In this paper, we call a weakly stable matching a stable matching. Accord-
ingly, we propose an approximation algorithm to solve MAX-SMTI. Our idea
is to apply the Gale-Shapley algorithm (GS) [7,14] for SMTI to find a stable
matching. If the found matching is non-perfect, we propose a heuristic repair
function to improve the matching by swapping the partners of men for single
men in the matching, and then apply GS again. Our algorithm terminates when
it finds a perfect matching or reaches a maximum number of iterations. Experi-
ments show that our algorithm is efficient in terms of execution time and solution
quality for solving MAX-SMTI of large sizes.

The rest of this paper is organized as follows: Sect. 2 describes the related
work, Sect. 3 presents the proposed algorithm, Sect. 4 discusses the experiments,
and Sect. 5 concludes our work.

2 Related Work

In the last few years, almost all algorithms proposed in the literature to solve
MAX-SMTI are approximate since MAX-SMTI is NP-hard [12,13]. An algo-
rithm is called r–approximation for MAX-SMTI if it always finds a stable
matching Γ with |Γ | ≥ |Γopt|/r, where Γopt is a stable matching of maximum
size [14].

Several approximation algorithms have been extended from the GS [7] to
solve MAX-SMTI. The general mechanism of these algorithms is to start
from an empty matching and build a maximum stable matching through iter-
ations. McDermid [16] proposed a 3/2–approximation algorithm that runs in
O(n3/2m) time, where n is the sum of men and women, and m is the sum of
lengths of the men’s and women’s preference lists. Király [14] modified GS [7]
to achieve two approximation algorithms including a 3/2–approximation algo-
rithm, namely GSA1, for SMTI where ties are allowed on one side only and

496 H. H. Viet et al.

a 5/3–approximation algorithm, namely GSA2, for the general case of SMTI.
Paluch [19,20] gave a 3/2−approximation algorithm, namely GSM, that runs in
O(m) time and additionally is simpler than that of McDermid [16], where m is
also the sum of the lengths of the men’s and women’s preference lists.

Local search has been used to solve MAX-SMTI. The general mechanism of
local search-based approximation algorithms is that starting from an arbitrary
matching, it improves the stability of the matching by eliminating blocking pairs
through iterations until it reaches a maximum stable matching. Gelain et al. [8,9]
presented a local search algorithm, namely LTIU, to deal with MAX-SMTI.
Munera et al. [18] applied the adaptive search method [3], namely AS, to solve
MAX-SMTI. They showed by experiments that AS outperforms LTIU in terms
of execution time and solution quality. Recently, we proposed a max-conflicts-
based heuristic search for MAX-SMTI [21]. Our algorithm is much more efficient
than AS and LTIU in terms of execution time and solution quality for MAX-
SMTI of large sizes. It should be noted that all the approaches in [8,9,18,21] used
a concept of undominated blocking pair instead of blocking pair to solve MAX-
SMTI. Since the computational time to determine a set of undominated blocking
pairs for all men at each iteration is O(n2), these algorithms are inefficient for
MAX-SMTI of large sizes.

3 Proposed Algorithm

3.1 HR Algorithm

We consider the GS given in [14] for SMTI. Given an instance I of SMTI, GS
outputs a stable matching Γ1 and we assume that Γ1 is non-perfect, meaning
that there exists some man mi that Γ1(mi) = ∅ and mi’s preference list = {}.
We consider two following cases:

Case 1: If we recover the original rank list for mi, let mi become active, and
run GS again, then GS outputs Γ2 which is the same as Γ1. This is because
(a) if a man mk �= mi and mk was assigned to wj in Γ1, then mk will keep his
partner wj in Γ2 since there exists no man mi such that rwj

(mi) < rwj
(mk); (b)

if mi is single in Γ1, then mi is also single in Γ2 since at the first run of GS, mi

was rejected by every wj in his rank list, meaning that every wj in mi’s rank
list was assigned to some mk or rwj

(mk) < rwj
(mi) and therefore, wj keeps her

partner mk and rejects mi at the second run of GS.
Case 2: If we recover the original rank list for mi, let wj be one of the women

in mi’s rank list so that either rmi
(wj) ≤ rmk

(wj) or rwj
(mi) = rwj

(mk), where
mk = Γ1(wj), then if we swap mi for mk in Γ1, i.e. (a) Γ1(mk) = ∅; (b)
Γ1(mi) = wj ; (c) delete wj from mk’s rank list; (d) let mk be active; and run
GS again with Γ1 as an input, then GS outputs Γ2, in which Γ2(mi) = wj and
mk may be assigned to some woman in his rank list. If so, we have |Γ2| > |Γ1|.
This is our idea to improve a stable matching in terms of maximum size.

Our heuristic repair algorithm, so called HR, to solve MAX-SMTI is shown
in Algorithm 1. We call a repair(mi,mk) a procedure consisting of (a) Γ (mi) :=
wj , where wj = Γ (mk), i.e. (mi, wj) becomes a pair; (b) Γ (mk) := ∅, i.e. mk

A Heuristic Repair Algorithm for the MAX-SMTI 497

Algorithm 1: HR Algorithm
1. function Main(I)
2. for (each mi ∈ M) do
3. Γ (mi) := ∅;
4. a(mi) := 1; � assign mi to be active

5. c(mi) := 0; � assign a count variable of mi to zero

6. end
7. iter := 1;
8. while iter ≤ max iters do
9. mi := some man is active, i.e. a(mi) = 1; � take an active man mi

10. if there exists no active man then
11. if Γ is perfect then break;
12. iter := iter + 1;
13. Γ := improve(Γ);
14. continue;

15. end
16. if mi’s rank list is empty then
17. a(mi) := 0; � assign mi to be inactive

18. c(mi) := c(mi) + 1; � increase the count variable of mi

19. continue;

20. end
21. if there exists a single woman wj to whom mi prefers most then
22. Γ (mi) := wj ; � mi becomes engaged to wj

23. a(mi) := 0;

24. else
25. wj := a woman to whom mi prefers most;
26. mk := Γ (wj);
27. if there exists a single wt that rmk (wt) = rmk (wj) then
28. repair(mi, mk);
29. end
30. if Γ (mi) = ∅ and rwj (mi) < rwj (mk) then
31. repair(mi, mk);
32. rmk (wj) := 0; � delete wj from mk’s rank list

33. else
34. rmi(wj) := 0; � delete wj from mi’s rank list

35. end

36. end

37. end
38. return Γ ;

39. end function

becomes single; (c) a(mi) := 0, i.e. mi is inactive; and (d) a(mk) := 1, i.e. mk

becomes active again. At the beginning, HR creates a matching Γ of single men
for each mi ∈ M , sets each mi to be active, and assigns a count variable for
each mi to zero (lines 2–6). At each iteration, if HR does not find any active
man mi, then it improves the matching Γ to obtain a better one in terms of

498 H. H. Viet et al.

maximum size (lines 10–15), otherwise, it runs GS to find a stable matching
for SMTI (lines 9, 21–36). In the former case, HR checks if Γ is perfect, then
it returns Γ , otherwise, it improves |Γ | by calling Algorithm 2 and starts the
next iteration. In the latter case, HR checks if mi’s rank list becomes empty
(i.e. rmj

(wj) = 0,∀wj ∈ W), then it assigns mi to be inactive, increases the
count variable c(mi) of mi’s exhaustive search, and starts the next iteration.
Otherwise, mi proposes a single woman wj to whom he prefers most. If there
exists a such wj , then wj is assigned to mi. However, if there exists no such wj ,
meaning that wj has a partner mk. Accordingly, wj is assigned to mi if either
mk has a single woman wt that rmk

(wt) = rmk
(wj) or wj prefers mi to mk. If

wj is assigned to mi, then mi becomes inactive (i.e. a(mi) = 0), otherwise, mi

deletes wj from his rank list (i.e. rmi
(wj) = 0). If wj rejects mk to be assigned

to mi, then mk becomes active and it deletes wj from his rank list, except mk

has a single woman wt that rmk
(wt) = rmk

(wj).
The function to improve |Γ | is shown in Algorithm 2. For each single man

mi ∈ M , since mi is single, meaning that it is rejected by all women in his
rank list or mi’s rank list becomes empty, he first recovers his original rank list.
Next, mi finds a set of women, wj , in his rank list such that rmi

(wj) ≤ rmk
(wj)

or rwj
(mi) = rwj

(mk), where mk = Γ (wj) (lines 5–10). If there exists no such
wj , the function continues for the next single man in M . Otherwise, a woman
wj corresponding to the minimum value of h(wj) is chosen to assign to mi and
mk, the previous partner of wj , deletes wj from his rank list. By doing so, mk

has opportunities to be assigned to the other women in his rank list in the next
iterations of HR. It should be noted that a woman wj is chosen such that h(wj)
is minimum, meaning that (i) mk has the maximum number of women wt that
rmk

(wt) = rmk
(wj); (ii) wj ranks mi closest to mk; and (iii) c(mk) is minimum.

3.2 Example

Considering an SMTI instance consists of eight men and eight women with their
preference lists given in Table 1, where ties in the men’s and women’s preference
lists are given in brackets. HR runs as follows:

(1) HR runs the first times of GS (lines 9, 21–36) and yields a stable match-
ing Γ = {(m1, w3), (m2, ∅), (m3, w8), (m4, w5), (m5, w2), (m6, w6), (m7, w1),
(m8, w4)} after 11 iterations. At the 12th iteration, since there exists no active
man and |Γ | = 7, the function improve(Γ) is called to improve |Γ |. Specifically,
since m2 is single, it recovers its original rank list. Next, m2 finds w5 to be a
candidate, since w5 has a partner m4, it rejects m4 to assign to m2 and m4

deletes w5 in his rank list. So, the function returns Γ = {(m1, w3), (m2, w5),
(m3, w8), (m4, ∅), (m5, w2), (m6, w6), (m7, w1), (m8, w4)}.

(2) HR runs the second times of GS and results in Γ = {(m1, w3), (m2, w5),
(m3, w8), (m4, ∅), (m5, w2), (m6, w6), (m7, w1), (m8, w4)} at the 14th iteration.
At the 15th iteration, since there exists no active man and |Γ | = 7, the function
improve(Γ) is called to improve |Γ | again. Specifically, since m4 is single, it
recovers its original rank list. Next, m4 finds w8 to be a candidate, since w8 has

A Heuristic Repair Algorithm for the MAX-SMTI 499

Algorithm 2: Improve a stable matching Γ

1. function Improve(Γ)

2. for each single man mi ∈ M do
3. recover mi’s original rank list;
4. X := {};
5. for each wj ∈ m′

is rank list do
6. mk := Γ (wj);
7. if rmi(wj) ≤ rmk(wj) or rwj (mi) = rwj (mk) then
8. X := X ∪ {wj}; � wj is a candidate for mi

9. end

10. end
11. if X is empty then continue;
12. for each wj ∈ X do
13. mk := Γ (wj);
14. k := number of wt in mk’s rank list, where rmk (wt) = rmk(wj);
15. h(wj) := 1/k + (rwj (mi) − rwj (mk)) × (1 − c(mk));

16. end
17. wj := argmin(h(wj)), ∀wj ∈ X;
18. repair(mi, mk), where mk := Γ (wj);
19. rmk(wj) := 0; � delete wj from mk’s rank list

20. end
21. return Γ ;

22. end function

Table 1. An SMTI instance of size 8

Men’s preference lists Women’s preference lists

m1: w3 w8 w5 w2 (w1 w7) w1: m8 m1 m5 m7

m2: w5 w2: m5 (m1 m8) m3

m3: w8 (w2 w3 w7) w5 w4 w3: m1 (m4 m7 m8) m3

m4: w8 w5 w3 w4: (m3 m8)

m5: (w1 w2 w7) w5: (m1 m3) m8 m4 m2

m6: (w6 w8) w6: m8 m6

m7: w1 w3 w8 w7 w7: m5 (m3 m7) m1 m8

m8: (w1 w4) (w7 w8) (w2 w3 w5 w6) w8: m8 m7 m6 m1 (m3 m4)

a partner m3, it rejects m3 to assign to m4 and m3 deletes w8 in his rank list.
So, the function yields Γ = {(m1, w3), (m2, w5), (m3, ∅), (m4, w8), (m5, w2),
(m6, w6), (m7, w1), (m8, w4)}.

(3) HR runs the third times of GS and results in a perfect matching Γ =
{(m1, w3), (m2, w5), (m3, w7), (m4, w8), (m5, w2), (m6, w6), (m7, w1), (m8, w4)}
of size 8 at the 17th iteration.

It should be noted that in this example, GS finds a stable matching Γ =
{(m1, w3), (m2, ∅), (m3, w7), (m4, w5), (m5, w2), (m6, w6), (m7, w8), (m8, w1)}
of size 7 and GSA2 finds a stable matching Γ = {(m1, w3), (m2, ∅), (m3, w8),

500 H. H. Viet et al.

(m4, w5), (m5, w2), (m6, w6), (m7, w1), (m8, w4)} of size 7. Although GSA2
improves GS but it gets stuck at the 7th iteration, where m2 becomes inactive
forever, and so m2 is a single man.

4 Experiments

In this section, we present experiments to evaluate the performance of our HR
algorithm. To do so, we chose GSA2 [14] to compare its performance with that of
HR since both GSA2 and HR are improved based on GS [14]. We implemented
HR and GSA2 by Matlab R2017b software on a laptop computer with Core i7-
8550U CPU 1.8 GHz and 16 GB RAM, running on Windows 10. The maximum
number of iterations used in HR is 50.

Datasets. We used the random problem generator given in [10] to generate
SMTI instances with three parameters (n, p1, p2), where n is the size, p1 is
the probability of incompleteness, and p2 is the probability of ties. Since stable
matchings of SMTI instances include acceptable pairs and singles, we generated
SMTI instances that the men’s and women’s preference lists of each instance
have only acceptable pairs.

4.1 Comparison of Solution Quality

This section presents our experimental results in comparing the percentage of
perfect matchings found by HR with that found by GSA2.

Experiment 1. In this experiment, we chose n ∈ {50, 100, 150, 200}, let
p1 ∈ {0.1, 0.2, · · · , 0.9} and p2 ∈ {0.0, 0.1, · · · , 1.0}. For each combination of
parameters (n, p1, p2), we generated 100 SMTI instances, ran HR and GSA2
on the generated instances. Our experimental results show that when p1 ∈
{0.1, 0.2, · · · , 0.5} and p2 ∈ {0.0, 0.1, · · · , 1.0}, both HR and GSA2 find 100%
of perfect matchings, so we do not show the experiment results here. Figure 1
shows the percentage of perfect matchings found by HR and GSA2. From the
experimental results, we can give some remarks as follows:

(1) The percentage of perfect matchings found by HR is higher than that
found by GSA2 for cases of (i) n = 50 and p1 ∈ {0.7, 0.8, 0.9}; (ii) n = 100 and
p1 ∈ {0.8, 0.9}; and (iii) n ∈ {150, 200} and p1 = 0.9. This means when each
person ranks fewer members of the opposite sex, HR is more efficient than GSA2
in finding perfect matchings for SMTI, especially for p1 ∈ {0.8, 0.9}. When n
increases, meaning that each person ranks many members of the opposite sex,
the percentage of perfect matchings found by HR and GSA2 increases, i.e. both
HR and GSA2 find easier perfect matchings.

(2) When p1 increases, the percentage of perfect matchings found by HR and
GSA2 decreases since the number of acceptable pairs in the men’s and women’s
preference lists decreases, making more difficult for finding perfect matchings.

(3) When p2 increases, the percentage of perfect matchings found by HR and
GSA2 increases since at the same p1 value, the number of ties in the men’s and
women’s preference lists increases, making easier for finding perfect matchings.

A Heuristic Repair Algorithm for the MAX-SMTI 501

HR p1 = 0.6 HR p1 = 0.7 HR p1 = 0.8 HR p1 = 0.9

GSA2 p1 = 0.6 GSA2 p1 = 0.7 GSA2 p1 = 0.8 GSA2 p1 = 0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 p2

0
10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
 o

f p
er

fe
ct

 m
at

ch
in

gs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 p2

0
10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
 o

f p
er

fe
ct

 m
at

ch
in

gs

(a) n = 50 (b) n = 100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 p2

0
10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
 o

f p
er

fe
ct

 m
at

ch
in

gs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 p2

0
10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
 o

f p
er

fe
ct

 m
at

ch
in

gs

(c) n = 150 (d) n = 200

Fig. 1. Percentage of perfect matchings found for n ∈ {50, 100, 150, 200}

Experiment 2. In the above experiment, for p1 ∈ {0.1, 0.2, · · · , 0.8} and when
n increases, both HR and GSA2 find easy perfect matchings since the number
of acceptable pairs in men’s and women’s rank list increases. Therefore, for
example n = 200, the comparison of the percentage of perfect matchings found
by HR and GSA2 is useless. In this experiment, we chose n ∈ {300, 400}, let
p1 ∈ {0.90, 0.92, · · · , 0.98} and p2 ∈ {0.0, 0.1, · · · , 1.0}. Figure 2 shows the results
of this experiment. Again, we see that when p1 increases, the percentage of
perfect matchings found by HR and GSA2 decreases and when p2 increases, the
percentage of perfect matchings found by HR and GSA2 increases. However,
HR outperforms GSA2 in terms of finding perfect matchings for SMTI.

4.2 Comparison of Execution Time

In the above experiments where n is small, the average execution time of HR
and GSA2 is very small and almost the same and therefore, the comparison of
the execution time of these algorithms is meaningless.

Experiment 3. In this experiment, to compare the execution time of HR and
GSA2 more precisely, we chose n ∈ {1000, 2000}, let p1 ∈ {0.1, 0.2, · · · , 0.9}

502 H. H. Viet et al.

HR p1 = 0.90 HR p1 = 0.92 HR p1 = 0.94 HR p1 = 0.96 HR p1 = 0.98

GSA2 p1 = 0.90 GSA2 p1 = 0.92 GSA2 p1 = 0.94 GSA2 p1 = 0.96 GSA2 p1 = 0.98

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 p2

0
10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
 o

f p
er

fe
ct

 m
at

ch
in

gs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 p2

0
10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
 o

f p
er

fe
ct

 m
at

ch
in

gs

(a) n = 300 (b) n = 400

Fig. 2. Percentage of perfect matchings found for n = {300, 400}

and p2 ∈ {0.0, 0.1, · · · , 1.0}. Since both HR and GSA2 are based on GS [9,14],
we implemented GS to compare the execution time of GS with that of HR
and GSA2. For each combination of parameters (n, p1, p2), we generated one
SMTI instance, ran HR, GSA2, and GS on the generated instances. Figure 3
shows the average execution time of HR, GSA2, and GS for finding perfect
matchings. We see that the execution time of HR is approximately equal to that
of GSA2. When p2 increases from 0.0 to 0.8, the execution time of both HR
and GSA2 is almost unchanged, but larger than that of GS. When p2 = 0.9,
the execution time of both HR and GSA2 significantly decreases, but that of
GS slightly increases. When p2 = 1.0, the execution time of HR, GSA2 and
GS increases. When p1 increases from 0.1 to 0.9, the execution time of both
HR and GSA2 is almost unchanged, while that of GS significantly decreases.
It should be emphasized that when n = 2000, SMTI has a huge search space
(2000! � 105735 matchings), but HR runs about 100 = 1.0 seconds for p2 ≤ 0.9
and about 100.3 = 1.99 seconds for p2 = 1.0.

Experiment 4. In Experiment 3, when p1 ∈ {0.1, 0.2, · · · , 0.9}, both HR and
GSA2 find 100% of perfect matchings. This may result in the execution time of
HR approximately equal to that of GSA2. In this experiment, we chose n and
p2 as in Experiment 3, but let p1 ∈ {0.91, 0.92, · · · , 0.99}. Figure 4 shows the
average execution time of HR, GSA2, and GS for finding perfect matchings.
Again, we see that the execution time of HR is approximately equal to that of
GSA2. When p2 increases from 0.0 to 1.0, the execution time of both HR and
GSA2 is decreases, while that of GS increases. When p1 increases from 0.91 to
0.99, the execution time of HR is almost unchanged, while that of GSA2 and
GS decreases. It should be noted that (i) when n = 1000, HR and GSA2 find
72% and 67% of perfect matchings, respectively; and (ii) when n = 2000, HR
and GSA2 find 90% and 87% of perfect matchings, respectively.

As we mentioned above, HR consists of GS to find a stable matching and
a heuristic function to maximize the matching found by GS, however, when

A Heuristic Repair Algorithm for the MAX-SMTI 503

HR GSA2 GS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 p2

-1.5

-1

-0.5

0

0.5

Av
er

ag
e

ex
ec

ut
io

n
tim

e
ov

er
 p

1 (l
og

10
(s

))

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 p1

-1

-0.8

-0.6

-0.4

-0.2

Av
er

ag
e

ex
ec

ut
io

n
tim

e
ov

er
 p

2 (l
og

10
(s

))

(a) n = 1000 (b) n = 1000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 p2

-0.5

0

0.5

1

1.5

2

Av
er

ag
e

ex
ec

ut
io

n
tim

e
ov

er
 p

1 (l
og

10
(s

))

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 p1

-0.2

0

0.2

0.4

0.6

0.8

1

Av
er

ag
e

ex
ec

ut
io

n
tim

e
ov

er
 p

2 (l
og

10
(s

))

(c) n = 2000 (d) n = 2000

Fig. 3. Execution time for finding perfect matchings, where p1 ∈ [0.1, 0.2, · · · , 0.9]

p2 ∈ {0.9, 1.0} or p1 is small, the execution time of HR is smaller than that of GS.
This is because at each iteration of GS, each single man mi proposes a woman wj

to whom he prefers most. If wj has a partner mk and rwj
(mk) < rwj

(mi), then
mi is rejected by wj . When p2 = 0.9, each man ranks women almost equally (i.e.
rarely rwj

(mi) < rwj
(mk)), and when p2 = 1.0, each man ranks women equally

(i.e. rwj
(mi) = rwj

(mk)), and vice versa. This means that mi has to propose the
next woman to whom he prefers most at the next iterations. If every woman wj

in mi’s preference list has a partner, then mi has to propose every wj and he is
rejected by wj , i.e. mi becomes a single. In contrary, at each iteration of HR,
each single man mi proposes a woman wj to whom he prefers most. Then, there
are two cases: (i) if there exists a single woman wj in the set of the women to
whom mi prefers equally, then wj is assigned to mi (lines 21–23 in HR); (ii) If wj

has a partner mk, and if there exists a single woman wt that rmk
(wt) = rmk

(wj),
then wj is assigned to mi (lines 27–29 in HR) and wt has a chance to assign to
mk when mk proposes wt at the next some iteration. By doing so, mi do not find
the next woman to whom he prefers most at the next iterations. Obviously, when
p1 increases, each man ranks fewer women in his preference list and therefore,
HR runs much faster than GS when p2 ∈ {0.9, 1.0} or p1 is small.

504 H. H. Viet et al.

HR GSA2 GS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 p2

-1.2

-1

-0.8

-0.6

-0.4

Av
er

ag
e

ex
ec

ut
io

n
tim

e
ov

er
 p

1 (l
og

10
(s

))

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
 p1

-1.4

-1.2

-1

-0.8

-0.6

Av
er

ag
e

ex
ec

ut
io

n
tim

e
ov

er
 p

2 (l
og

10
(s

))

(a) n = 1000 (b) n = 1000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 p2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Av
er

ag
e

ex
ec

ut
io

n
tim

e
ov

er
 p

1 (l
og

10
(s

))

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
 p1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Av
er

ag
e

ex
ec

ut
io

n
tim

e
ov

er
 p

2 (l
og

10
(s

))

(c) n = 2000 (d) n = 2000

Fig. 4. Execution time for finding perfect matchings, where p1 ∈ [0.91, 0.92, · · · , 0.99]

5 Conclusions

This paper proposed a heuristic repair algorithm, namely HR, to solve the
MAX-SMTI problem. HR is designed including a well-known GS algo-
rithm [9,14] to find a stable matching for the SMTI problem and a heuristic
repair function to improve the quality of the found stable matching in terms of
maximum size. The experimental results for large randomly generated instances
of SMTI showed that HR outperforms GSA2 [14] in terms of solution quality
for finding perfect matchings of SMTI problem. In the future, we plan to extend
the proposed approach to the Hospitals/Residents with Ties problem [11,17] and
the Student-Project Allocation problem [1,6].

Acknowledgment. This research is funded by the Basic Science Research Pro-
gram through the National Research Foundation of Korea under grant number NRF-
2020R1F1A1050014.

References

1. Abraham, D.J., Irving, R.W., Manlove, D.F.: The student-project allocation prob-
lem. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp.
474–484. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24587-
2 49

https://doi.org/10.1007/978-3-540-24587-2_49
https://doi.org/10.1007/978-3-540-24587-2_49

A Heuristic Repair Algorithm for the MAX-SMTI 505

2. Askalidis, G., Immorlica, N., Kwanashie, A., Manlove, D.F., Pountourakis, E.:
Socially stable matchings in the hospitals/residents problem. In: Dehne, F., Solis-
Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 85–96. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40104-6 8

3. Codognet, P., Diaz, D.: Yet another local search method for constraint solving. In:
Steinhöfel, K. (ed.) SAGA 2001. LNCS, vol. 2264, pp. 73–90. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45322-9 5

4. Cseh, Á., Irving, R.W., Manlove, D.F.: The stable roommates problem with
short lists. Theory Comput. Syst. 63(1), 128–149 (2017). https://doi.org/10.1007/
s00224-017-9810-9

5. Cseha, A., Manlove, D.F.: Stable marriage and roommates problems with restricted
edges: complexity and approximability. Discrete Optimizat. 20(1), 62–89 (2016)

6. Diebold, F., Bichler, M.: Matching with indifferences: a comparison of algorithms
in the context of course allocation. Eur. J. Oper. Res. 260(1), 268–282 (2017)

7. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 9(1), 9–15 (1962)

8. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Local search for stable
marriage problems with ties and incomplete lists. In: Zhang, B.-T., Orgun, M.A.
(eds.) PRICAI 2010. LNCS (LNAI), vol. 6230, pp. 64–75. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15246-7 9

9. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Local search approaches
in stable matching problems. Algorithms 6(4), 591–617 (2013)

10. Gent, I.P., Prosser, P.: An empirical study of the stable marriage problem with ties
and incomplete lists. In: Proceedings of the 15th European Conference on Artificial
Intelligence, pp. 141–145. Lyon, France, July 2002

11. Irving, R.W., Manlove, D.F.: Finding large stable matchings. J. Experiment. Algo-
rithmics 14(2), 1.2–1.2:30 (2009)

12. Irving, R.W., Manlove, D.F., O’Malley, G.: Stable marriage with ties and bounded
length preference lists. J. Discret. Algorithms 7(1), 213–219 (2009)

13. Iwama, K., Miyazaki, S., Morita, Y., Manlove, D.: Stable marriage with incomplete
lists and ties. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP
1999. LNCS, vol. 1644, pp. 443–452. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48523-6 41

14. Király, Z.: Linear time local approximation algorithm for maximum stable mar-
riage. Algorithms 6(1), 471–484 (2013)

15. Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants
of stable marriage. Theoret. Comput. Sci. 276(1–2), 261–279 (2002)

16. McDermid, E.: A 3/2-approximation algorithm for general stable marriage. In:
Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5555, pp. 689–700. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02927-1 57

17. Munera, D., Diaz, D., Abreu, S., Rossi, F., Saraswat, V., Codognet, P.: A local
search algorithm for SMTI and its extension to HRT problems. In: Proceedings
of the 3rd International Workshop on Matching Under Preferences, pp. 66–77.
Glasgow, United Kingdom, April 2015

18. Munera, D., Diaz, D., Abreu, S., Rossi, F., Saraswat, V., Codognet, P.: Solving
hard stable matching problems via local search and cooperative parallelization. In:
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp.
1212–1218. Austin, Texas, January 2015

https://doi.org/10.1007/978-3-642-40104-6_8
https://doi.org/10.1007/3-540-45322-9_5
https://doi.org/10.1007/s00224-017-9810-9
https://doi.org/10.1007/s00224-017-9810-9
https://doi.org/10.1007/978-3-642-15246-7_9
https://doi.org/10.1007/3-540-48523-6_41
https://doi.org/10.1007/3-540-48523-6_41
https://doi.org/10.1007/978-3-642-02927-1_57

506 H. H. Viet et al.

19. Paluch, K.: Faster and simpler approximation of stable matchings. In: Proceedings
of the 9th International Workshop on Approximation and Online Algorithms, pp.
176–187. Saarbrucken, Germany, September 2011

20. Paluch, K.: Faster and simpler approximation of stable matchings. Algorithms
7(2), 189–202 (2014)

21. Viet, H.H., Uyen, N.T., Lee, S.G., Chung, T.C., Trang, L.H.: A max-conflicts based
heuristic search for the stable marriage problem with ties and incomplete lists. J.
Heuristics 27(3), 439–458 (2021). https://doi.org/10.1007/s10732-020-09464-8

https://doi.org/10.1007/s10732-020-09464-8

