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A Max-Min Conflict Algorithm
for the Stable Marriage Problem

Hoang Huu Viet1, Nguyen Thi Uyen1, Pham Tra My1, Son Thanh Cao1,
and Le Hong Trang2(B)

1 School of Engineering and Technology, Vinh University, Vinh City, Vietnam
{viethh,uyennt,mypt,sonct}@vinhuni.edu.vn
2 Faculty of Computer Science and Engineering,

Ho Chi Minh City University of Technology, VNU-HCM, Ho Chi Minh City, Vietnam
lhtrang@hcmut.edu.vn

Abstract. In this paper we present a max-min conflict algorithm to find
a stable matching rather than the man- and woman-optimal matchings
for the stable marriage problem. We solve the problem in terms of a
constraint satisfaction problem, i.e. find a complete assignment for men
in which every man is assigned to a woman so that the assignment does
not contain any blocking pairs. To do this, we apply a local search method
in which a max-conflict heuristic is used to choose the man making the
maximum number of blocking pairs in a matching, while a min-conflict
heuristic is used to remove all the blocking pairs formed by the chosen
man. Experiments showed that our algorithm is efficient for finding a
stable matching of large stable marriage problems.

Keywords: Constraint satisfaction problem · Local search ·
Max-min-conflicts · Stable marriage problem

1 Introduction

The stable marriage (SM) problem, introduced by Gale and Shapley [6] in 1962,
is a well-known problem of matching an equal number men and women to satisfy
a certain criterion of stability. Recently, this problem has been attracting much
attention from the research community due to its important role in a wide range
of applications such as the Evolution of the Labor Market for Medical Interns
and Residents [15], the Student-Project Allocation problem (SPA)[1] and the
Stable Roommates problem (SR) [5,11].

An SM instance of size n consists of a set of n men and a set of n women
in which each person ranks all members of the other set in a strict order of
preference. A matching M is a set of n disjoint pairs of men and women. If a
man m and a woman w are a pair (m,w) ∈ M , we say that m and w are partners
in M , denoted by m = M(w) and w = M(m). If m prefers w to M(m) and w
prefers m to M(w), then we say that m and w form a blocking pair in M . A

c© Springer Nature Switzerland AG 2019
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matching M is said to be stable if it has no any blocking pairs, otherwise it is
said to be unstable.

Gale and Shapley showed that there exists at least one stable matching for
every instance of SM and proposed an algorithm, called Gale-Shapley algorithm,
to find a stable matching of SM instances of size n in time O(n2) [6]. This algo-
rithm is a sequence of proposals either from the men to the women or from the
women to the men. In the former case, it finds the so-called man-optimal stable
matching, in which each man has the best partner, but each woman has the
worst partner compared to their partners in any other stable matchings. In the
latter case, it finds the woman-optimal stable matching, in which the men’s and
women’s properties are interchanged. For some SM instances, there may be many
other stable matchings between the man- and woman-optimal stable matchings.
Moreover, the man- (respectively woman-) optimal stable matching is the “self-
ish” matching for the men (respectively women), i.e. the proposers always get
their best partners but the responders get their worst partners. Therefore, it
is appropriate to seek other optimal stable matchings to give a more balanced
preference for both the men and women.

In this paper, we present a max-min conflict algorithm to seek a stable match-
ing rather than the man- and woman-optimal matchings of SM instances. The
algorithm starts from a random matching and tries to search a better one by
mean of reducing the number of blocking pairs. At each search step, the algo-
rithm chooses a man making the maximum number of blocking pairs and a
woman in blocking pairs formed by the man such that her rank is minimum
in the chosen man’s preference list. To avoid getting stuck in a local optimum,
the algorithm also chooses a random woman in blocking pairs formed by the
chosen man in a small probability. Then, the algorithm removes the blocking
pair formed by the man and the woman in the matching and repeats for the
matching until the matching is stable. The experiments show that our approach
is efficient in terms of computational time for large SM problems.

The rest of this paper is organized as follows: Sect. 2 describes the related
work, Sect. 3 presents the proposed algorithm, Sect. 4 discusses the experiments
and evaluations, and Sect. 5 concludes our work.

2 Related Work

In the last few years, there were several approaches to find a stable matching
rather than the man- and woman- optimal matchings. Nakamura et al. proposed
a genetic algorithm (GA) for finding the sex-fair matching of SM instances [14].
In their approach, the problem is first transferred into a directed graph and
the GA is used to find the solution in the graph. Vien et al. applied the ant
colony system (ACS) algorithm [3] for finding the man-optimal, woman-optimal,
egalitarian and sex-equal stable matchings of SM instances [16]. Unfortunately,
the ACS algorithm finds the matching under a given criterion only for small
SM instances because it has to find n2 pairs (man, woman) to form a stable
matching. Zavidovique et al. [18] presented three zigzag algorithms, named ZZ,
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OZ and BZ, to find matchings that meet three criteria of stability, sex equality
and egalitarian. In O(n2) time, the ZZ algorithm finds the egalitarian, while
the OZ algorithm finds both the egalitarian and sex equality, but they are not
guaranteed that they will find stable matchings. In O(n3) time, the BZ algorithm
is designed to meet all three criteria rather than the egalitarian or sex-equal
matching. Everaere et al. [4] proposed a Swing algorithm for finding the sex-
equal matching of SM instances, in which the men and women alternatively
play the role of proposers and responders in iterations. When the Swing stops, it
takes O(n3) time to obtain a stable matching other than the sex-equal matching.
Giannakopoulos et al. [10] provided an ESMA algorithm [10] which the idea is
similar to that of Swing. However, in the ESMA the proposers are men when the
sign of the function sin(k2) is positive and women when the sign of the function
is negative, where k is the iteration counter of the algorithm.

Recently, a local search approach has been applied to deal with the SM prob-
lem. Gelain et al. [7] proposed three local search algorithms, named SML, SML1
and SML2, for finding an arbitrary stable matching of SM instances. Starting
at a randomly generated matching, M , these algorithms produce a set of the
neighbor matchings of M , where a neighbor is determined by removing one of
the blocking pairs in M , and moves M to the neighbor matching which has the
smallest number of blocking pairs. This process iteratively performs until the
stability in M is obtained. Viet et al. [17] developed an empirical local search
algorithm for finding an approximation solution in terms of the egalitarian or
sex-equal matching. This algorithm uses the breakmarriage operation [12] to find
all the stable neighbor matchings of the current stable matching and then move
the current matching to the best matching in the stable neighbor matchings.
Besides, Gent et al. [8] proposed two algorithms to formulate an SM instance
to a constraint satisfaction problem. Codognet and Diaz proposed a generic,
domain-independent local search method, called adaptive search (AS), for solv-
ing constraint satisfaction problems [2]. Accordingly, Gent et al. [9] and Munera
et al. [13] proposed local search algorithms to deal with the stable marriage
problem with ties and incomplete lists, a variant of the SM problem, based on
constraint satisfaction problems.

3 Max-Min Conflict Algorithm

In this section, we propose a max-min conflict algorithm, so called MMC, to
find a stable matching for the SM problem. Our approach is based on a local
search method for solving a constraint satisfaction problem, in which men are
considered as variables, women are considered as the domain of each variable
and constraints are that there exists no blocking pair in matchings. According
to this approach, a stable matching is a complete assignment in which every
variable is assigned to a value so that the matching does not violate constraints.
To find a stable matching, our search strategy is that at each search step we
choose the most constrained variable, i.e. a man making the maximum number
of blocking pairs, and select the least constrained value, i.e. a woman having the
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Algorithm 1. Max-Min Conflict Algorithm
Input : An SM instance of size n,

max iters, the maximum number of iterations.
Output: M , a stable matching.

1. M := a randomly generated matching;
2. iter := 1;
3. while (iter ≤ max iters) do
4. if (there exists no blocking pair in M) then
5. break;
6. end
7. X := {(m,w) | (m,w) is a blocking pair in M};
8. error(m) := counting the number of man m appearing in X;
9. Y := {(m′, w′) ∈ X | m′ = argmax(error(i)), i = 1, 2, · · · , n};

10. if (a small probability of p) then
11. w′′ := a random woman w′ ∈ Y ;
12. else
13. w′′ := argmin(mr(m′, w′)), where (m′, w′) ∈ Y ;
14. end
15. M := removing the bloking pair (m′, w′′) ∈ M ;
16. iter = iter + 1;

17. end
18. return M ;

minimum rank in the chosen man’s preference list. This is because that choosing
the most constrained variable is able to remove the largest number of blocking
pairs, while selecting the least constrained value of the chosen variable removes
all the blocking pairs formed by the chosen man and therefore, our algorithm
accelerates the search of a stable matching.

We let mr(m,w) denote the rank of a woman, w, in a man m′s preference
list. For a man, m, we define an error function, error(m), to be the number of
blocking pairs formed by m in a matching M . Our MMC algorithm is shown in
Algorithm 1. Starting from a randomly generated matching, M , the algorithm
performs as follows. First, the algorithm checks if there exists no blocking pair
in M , meaning that M is stable, then it returns the matching M . Otherwise,
the algorithm determines all the blocking pairs (m,w) ∈ M (line 7) and finds a
man, m′, making the maximum number of blocking pairs in M , i.e., the man has
the maximum number of conflicts in terms of blocking pairs (line 9). If a small
probability of p is accepted, the algorithm chooses a random woman, w′′, who
is making a blocking pair with m′. Otherwise, the algorithm chooses a woman,
w′′, to whom man m′ most prefers in the set of the women making blocking
pairs with m′. Then, the algorithm removes the blocking pair (m′, w′′) by mean
of replacing two pairs of (m′,M(m′)) and (M(w′′), w′′) by two pairs of (m′, w′′)
and (M(w′′),M(m′)) in M . The algorithm repeats until either the matching M
has no blocking pairs or a maximum number of iterations is reached.
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Table 1. Preference lists of eight men and eight women

Man Preference list Woman Preference list

m1 4 7 3 8 1 5 2 6 w1 1 3 5 4 2 6 8 7

m2 5 3 4 2 1 8 6 7 w2 8 2 4 5 3 7 1 6

m3 3 8 2 4 6 7 5 1 w3 5 8 1 4 2 3 6 7

m4 5 6 8 3 4 7 1 2 w4 2 4 3 6 5 8 1 7

m5 1 3 5 2 8 6 4 7 w5 6 5 4 8 1 7 2 3

m6 8 6 2 5 1 7 4 3 w6 7 4 2 5 6 8 1 3

m7 2 5 8 3 6 4 7 1 w7 3 8 6 5 7 2 1 4

m8 5 7 4 1 6 2 8 3 w8 4 7 1 3 5 8 2 6

Considering an SM instance consists of eight men and eight women with their
preference lists given in Table 1. Suppose that given a probability p = 0 and a
random matching M = {(1,3), (2,1), (3,2), (4,8), (5,7), (6,4), (7,5), (8,6)}, the
algorithm runs as follows. Because the matching M is unstable, the algorithm
continues to find all the blocking pairs in M : X = {(2,2), (2,4), (4,5), (4,6),
(5,1), (5,2), (5,3), (5,5), (5,6), (6,5), (6,6), (6,7), (8,5), (8,7)} (the number of
blocking pairs in M is 14). Then, it counts the number of blocking pairs in M , i.e.
error(m), formed by man m, that is error(2) = 2, error(4) = 2, error(5) = 5,
error(6) = 3, error(8) = 2. Next, the algorithm takes the set of blocking pairs
Y = {(5,1), (5,2), (5,3), (5,5), (5,6)} corresponding to the man, m = 5, who
is making the maximum number of blocking pairs. Because man m = 5 most
prefers woman w = 1 to the other women in his blocking pairs, the algorithm
removes the blocking pair (5, 1) in M by replacing two pairs of (5,7) and (2,1)
by two pairs of (5,1) and (2,7) in M to obtain the matching M = {(1,3), (2,7),
(3,2), (4,8), (5,1), (6,4), (7,5), (8,6)}. Because the number of blocking pairs in
M is 10, i.e. not zero, the algorithm continues repeating until the stability of
M is obtained. Specifically, after four iterations, the algorithm terminates and
gives a matching M = {(1,3), (2,4), (3,2), (4,5), (5,1), (6,6), (7,8), (8,7)}, which
is a stable matching.

4 Experiments

In this section we presents the experiments implemented by Matlab software
on a Core i7-8550U CPU 1.8 GHz computer with 16 GB RAM. To evaluate the
performance of our algorithm, we randomly produced 100 SM instances of 10
difference sizes from 20 to 200 with step 20 and 10 variants per size.

First, we ran experiments to determine the best value of probability p for
the SM instances of size n, where n = 20, 40, 60, 80 and 100. Figure 1 shows our
experimental results. For the SM instances of size 40, the average number of
iterations to find stable matchings is highest when p = 0. For the SM instances
of the other sizes, the average number of iterations to find stable matchings when
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p = 0 is almost the same as that when p = 0.02. Therefore, we choose p = 0.02
to be the best value in our experiments.

Second, we performed experiments to consider the behavior of the max-min
conflict heuristics. To do this, we considered the variation of the number blocking
pairs of matchings in iterations of MMC algorithm. Figure 2 shows experimental
results for the sizes of SM instances consisting of n = 20, 40, 60, 80 and 100.
Specifically, to find a stable matching, MMC needs 32 iterations for n = 20, 132
iterations for n = 40, and 252 iterations for n = 100. It is easy to see that for
an SM instance of size n, the number of pairs (man, woman) is n2, therefore
when the sizes of SM instances increases from 20 to 100, the number of pairs
(man, woman) increases from 400 to 10000. However, for MMC, the number
of iterations increases only from 32 to 252, i.e. MMC is efficient for large SM
instances. Figure 2 also shows that the number of blocking pairs found by MMC
algorithm does not monotonically decrease, i.e. there exist local minimum values.
This is because when removing a blocking pair in a matching to obtain a new
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matching, the new matching will generate the new blocking pairs that it is not
guaranteed that the number of blocking pairs of the new matching is smaller
than that of the old one. However, even when the probability p = 0 as shown
in Fig. 1, our MMC algorithm also overcomes this weak point to find a stable
matching after a finite number of iterations.

Next, we performed experiments to compare the execution time of MMC
algorithm with that of the SML2 algorithm [7]. Figure 3 shows the experimental
results. When the size of SM instances is 20, the execution time found by the
MMC and SML2 algorithms is about 10−1.15 ≈ 0.07 and 10−0.5 ≈ 0.31 s, respec-
tively, i.e. our MMC runs about 4.5 times faster than SML2 algorithm. When the
size of SM instances is 100, the execution time found by MMC and SML2 algo-
rithm is about 101.35 ≈ 22.38 and 102.30 ≈ 199.52 s, respectively, i.e. our MMC
runs about 9 times faster than SML2 algorithm. Especially, when the size of SM
instances is 200, the execution time found by our MMC is about 102.42 ≈ 263.02 s,
but the execution time found by SML2 algorithm is about 103.9 ≈ 7943.30 s, i.e.
our MMC runs about 30 times faster than SML2 algorithm. This means that
the larger SM instances is, the faster MMC runs compared to SML2 algorithm.
The experimental results are explained as follows. At each iteration, SML2 keeps
at least n neighbor matchings and for each neighbor matching, it has to take
O(n2) time to determine the number of blocking pairs. This means that at each
iteration, SML2 has to take O(n3) time to find the best matching in the neighbor
matchings. Meanwhile, our MMC algorithm keeps only one neighbor matching
to determine the number of blocking pairs, i.e. MMC needs only O(n2) time for
each iteration and therefore, our MMC algorithm runs much faster than SML2
algorithm, especially for large SM problems.

It should be noted that in the MMC algorithm, the roles of men and women
can be interchanged at iterations as in [4,10]. This means that the max-min
conflict heuristics are applied for the men at the odd iterations, but applied for
the women at the even iterations of the algorithm. However, we think that it
is better if we improve MMC algorithm as follows: At each iteration, after we
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found all the blocking pairs in M , we find both a man m′ and a woman w′

who are having the maximum number of conflicts by mean of blocking pairs.
Then, we apply the max conflict heuristic for only either m′ or w′ who is making
the maximum number of blocking pairs in M . Next, we apply the min conflict
heuristic for the chosen person. We call the improved algorithm the MMC2
algorithm. Figure 4 shows experimental results to compare the runtime of MMC
algorithm with that of MMC2 algorithm. Obviously, MMC2 algorithm is an
efficient variant of MMC algorithm, especially for SM instances of large sizes.

5 Conclusions

This paper proposed a max-min-conflict algorithm to find a stable matching
which is different from the man- and woman-optimal matchings of the SM prob-
lem. Starting a randomly generated matching, the algorithm finds a man making
the maximum number of blocking pairs. Once a man has been found, the algo-
rithm chooses a woman in blocking pairs formed by the man such that her rank
is minimum in the man’s preference list. The algorithm then removes the block-
ing pair formed by the man and the woman in the matching and repeats for
the matching until it is stable. Experiments showed that our MMC algorithm
outperforms the SML2 algorithm in terms of execution time for finding a stable
matching of large stable marriage problems. In the future, we plan to extend
the proposed approach to the stable marriage problem with ties and incomplete
lists [7,13].
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